Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác AIHK:
\(\widehat{AIH}+\widehat{AKH}=90^o+90^o=180^o\)
\(\Rightarrow\) Tứ giác AIHK nội tiếp
Xét \(\Delta MIB\) và \(\Delta MCK\):
\(\widehat{IMC}\) chung
\(\widehat{MBI}=\widehat{MKC}\)
\(\Rightarrow\Delta MIB~\Delta MCK\left(g.g\right)\)
\(\Rightarrow\dfrac{MI}{MB}=\dfrac{MC}{MK}\)
\(\Leftrightarrow MI.MK=MC.MB\)
\(\widehat{IMP}=\dfrac{1}{2}\widehat{IMB}\)
\(\widehat{IAP}=\dfrac{1}{2}\widehat{IAK}\)
\(\Rightarrow\widehat{APM}=180^o-\dfrac{1}{2}\left(\widehat{IMB}+\widehat{IAK}\right)=180^o-\dfrac{1}{2}.180^o=90^o\)
\(\Rightarrow AP\perp MP\).
a) Trong tam giác ABC cóE là giao điểm 2 phân giác trong góc B và C nên AE là phân giác góc BAC
Khi đó AE và AD đều là phân giác trong của góc BAC
=> 3 điểm A,E,D thẳng hàng
b) Có: ACB+BCx =180
=> 1/2 ACB +1/2 BCx =90
=> DCB + BCE =90
=> DCE =90
Tương tự : DBE =90
Trong tứ giác BECD CÓ DBE +DCE =90+90=180
=> TỨ giác BECD nội tiếp
c) theo câu b thì tứ giác BECD nội tiếp nên
DCB =DEB ( 2 góc nội tiêp cung chắn cung BD)
Xét tam giác DIC và tam giác BIE có :
DCB=DEB (cmt)
DIC= BIE ( 2 góc đối đỉnh)
=> tam giác DIC đồng dạng với tam giác BIE
=>\(\frac{BI}{ID}\)=\(\frac{IE}{IC}\)
=> BI *IC= ID*IE
mình ghi lại câu a nhé
Vì E là giao điểm của 2 đường phân giác trong của góc B,C nên E cũng thuộc đường phân giac của góc A
=> AE là phân giác góc A
Vì D là giao điểm của 2 đường phân giác các góc ngoài của góc B,C nên ta có D cách đều 2 cạnh AB,AC
=> D thuộc đường phân giác góc A
=>AE,AD nhau
=> A,E,D thẳng hàng
Cho △ABC nhọn (AB<AC) nội tiếp (O), 2 đường cao BD và CE cắt nhau tại H
a/ Chứng minh : B,C,D,E cùng nằm trên một đường tròn .Xác định tâm M của đường tròn này.
b/ Chứng minh : OM // AH
c/ Chứng minh : AB.AE = AC.AD
d/ Gọi K là điểm đối xứng của H qua M .