Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta ABD\)và \(\Delta ACE\)có:
\(\widehat{ADB}=\widehat{AEC}=90^o\); \(\widehat{BAC}\)( chung )
\(\Rightarrow\)\(\Delta ABD\approx\Delta ACE\left(g.g\right)\)
\(\Rightarrow\)\(\frac{AB}{AC}=\frac{AD}{AE}\)
Xét \(\Delta ADE\)và \(\Delta ABC\)có :
\(\frac{AB}{AC}=\frac{AD}{AE}\); \(\widehat{BAC}\)( chung )
\(\Rightarrow\Delta ADE\approx\Delta ABC\left(c.g.c\right)\)
\(\Rightarrow\widehat{D_1}=\widehat{ABC}\)
Xét \(\Delta ADM\)và \(\Delta ABN\)có :
\(\widehat{D_1}=\widehat{ABN}\); \(\widehat{A_1}=\widehat{A_2}\)
\(\Rightarrow\Delta ADM\approx\Delta ABN\left(g.g\right)\)
\(\Rightarrow\frac{AD}{AB}=\frac{AM}{AN}=\frac{1}{2}\)
Vậy M là trung điểm AN
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc BAD chung
=>ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC
=>AD*AC=AE*AB; AD/AB=AE/AC
b: Xet ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
=>ΔADE đồng dạng với ΔABC
1)
Ta có : BD là đg trung tuyến của tam giác ABC (gt)
=> D là tđ của AC (1)
CE là đg trung tuyến của tam giác ABC (gt)
=>E là tđ của AB (2)
Từ (1),(2)
=>DE là đg trung bình của tam giác ABC
=>DE // BC : DE=1/2 BC
Thay BC=10cm
=>DE=5cm
2)
a) Ta có:MN // BC (gt)
=>MI // BC
Lại có:ED // BC (cmt)
=>MI // BC
Xét tam giác BED,có:
MI // BC
I là tđ của BD (gt)
=> MI là đg trung bình của tam giác BED
=>M là tđ của BE
b) Ta có: MN // BC (gt)
=>MK // BC
Xét tam giác BEC,có:
MK // BC (cmt)
M là tđ của BE (cmt)
=> MK là đg trung bình của tam giác BEC
c) ko đề
d) MK là đg trung bình của tam giác BEC (cmt)
=>MK=1/2 BC
=>MI + IK =1/2 BC
Thay MI =1/2 DE (MI là đg trung bình của tam giác BED)
=>1/2 DE + IK = 1/2 BC
=> IK =1/2 (BC-DE)
=>IK=1/2 DE (vì DE =1/2 BC)
Có: MI =1/2 DE (cmt)
KN =1/2 DE (cmt)
=>MI=KN=IK (=1/2 DE)
1: Xét ΔABD vuông tại D và ΔACE vuông tại E có
\(\widehat{A}\) chung
Do đó: ΔABD∼ΔACE
Suy ra: AB/AC=AD/AE
hay \(AB\cdot AE=AC\cdot AD\)
2: Xét ΔADE và ΔABC có
AD/AB=AE/AC
\(\widehat{DAE}\) chung
Do đó:ΔADE∼ΔABC