Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ANHM có
\(\widehat{ANH}+\widehat{AMH}=180^0\)
Do đó: ANHM là tứ giác nội tiếp
b: Xét ΔBNH vuông tại N và ΔBMA vuông tại M có
\(\widehat{NBH}\) chung
Do đó: ΔBNH∼ΔBMA
Suy ra: BN/BM=BH/BA
hay \(BN\cdot BA=BH\cdot BM\)
Xét ΔCMH vuông tại M và ΔCNA vuông tại N có
\(\widehat{MCH}\) chung
Do đó: ΔCMH∼ΔCNA
Suy ra: CM/CN=CH/CA
hay \(CM\cdot CA=CH\cdot CN\)
\(BN\cdot BA+CM\cdot CA=BM\cdot BM+CH\cdot CN=BC^2\)
a: Xét tứ giác BNMC có
\(\widehat{BNC}=\widehat{BMC}=90^0\)
Do đó: BNMC là tứ giác nội tiếp
hay B,N,M,C cùng thuộc một đường tròn
b: Xét ΔAMB vuông tại M và ΔANC vuông tại N có
\(\widehat{NAC}\) chung
Do đó: ΔAMB\(\sim\)ΔANC
Suy ra: \(\dfrac{AM}{AN}=\dfrac{AB}{AC}\)
hay \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
Xét ΔAMN và ΔABC có
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
\(\widehat{NAC}\) chung
Do đó: ΔAMN\(\sim\)ΔABC
a: Kẻ tiếp tuyến Ax của (O)
Xét (O) có
\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{xAC}=\widehat{ABC}\left(1\right)\)
Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)
nên BFEC là tứ giác nội tiếp
=>\(\widehat{FEC}+\widehat{FBC}=180^0\)
mà \(\widehat{FEC}+\widehat{AEF}=180^0\)(hai góc kề bù)
nên \(\widehat{AEF}=\widehat{ABC}\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{AEF}=\widehat{xAC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên Ax//FE
Ta có: Ax//FE
OA\(\perp\)Ax
Do đó: OA\(\perp\)FE
b: Gọi giao điểm của AI và (O) là D
Xét (O) có
AO là bán kính
AO cắt (O) tại D
Do đó: AD là đường kính của (O)
Gọi giao điểm của AH với BC là N
Xét ΔABC có
BE,CF là các đường cao
BE cắt CF tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC tại N
Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
Xét (O) có
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
\(\widehat{ADC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{ABC}=\widehat{ADC}\)
Xét ΔANB vuông tại N và ΔACD vuông tại C có
\(\widehat{ABN}=\widehat{ADC}\)
Do đó: ΔANB~ΔACD
=>\(\widehat{BAN}=\widehat{CAD}\)
=>\(\widehat{BAN}+\widehat{NAD}=\widehat{CAD}+\widehat{NAD}\)
=>\(\widehat{PAE}=\widehat{IAB}\)
Xét ΔAPE và ΔAIB có
\(\widehat{PAE}=\widehat{IAB}\)
\(\widehat{AEP}=\widehat{ABI}\)
Do đó: ΔAPE~ΔAIB
a: Xét tứ giác BCEF có
\(\widehat{BFC}=\widehat{BEC}\)
nên BCEF là tứ giác nội tiếp
Xét tứ giác CDHE có
\(\widehat{HDC}+\widehat{HEC}=180^0\)
Do đó: CDHE là tứ giác nội tiếp
a) Xét tứ giác BCMN ta có
\(\widehat{BNC}=90^o\)(CN là đường cao, vuông góc với AB)
\(\widehat{BMC}=90^o\)(BM là đường cao, vuông góc với AC)
=> Tứ giác BCMN là tứ giác nội tiếp (do \(\widehat{BNC},\widehat{BMC}\)cùng nhìn cạnh BC với 1 góc bằng 90o)
a, Vì BM là đường cao => \(BM\perp AC\)=> ^BMC = 900
Vì CN là đường cao => \(CN\perp AB\)=> ^CNB = 900
Xét tứ giác BCMN ta có :
^BMC = ^CMB = 900
^BMC ; ^CMB cùng nhìn về BC
Vậy tứ giác BCMN nội tiếp