\(\widehat{ABC}=60^o\)với hai đường cao AD, BE cắt nhau tại H. Tia...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔHDC vuông tại D và ΔHFA vuông tại F có

góc DHC=góc FHA

Do đó: ΔHDC đồng dạng với ΔHFA
Suy ra: HD/HF=HC/HA

hay \(HD\cdot HA=HC\cdot HF\)

Xét ΔDBH vuông tại D và ΔDAC vuông tại D có

góc DBH=góc DAC

Do đó: ΔDBH đồng dạng với ΔDAC

Suy ra: DB/DA=DH/DC

hay \(DB\cdot DC=DH\cdot DA\)

b: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

góc EAB chung

Do đó: ΔAEB đồng dạng với ΔAFC

Suy ra: AE/AF=AB/AC

hay AE/AB=AF/AC

Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc FAE chung

Do đo: ΔAEF đồng dạng với ΔABC

=>góc AFE=góc ACB

18 tháng 3 2020

k mk nha

19 tháng 5 2019

bạn tự vẽ hinh nha

1)

Xét tam giác ABC có

hai đường cao BE và CD cắt nhau tại H nên H là trực tâm

do đó \(AH\perp BC\)

mà \(HM\perp BC\)

suy ra AH trùng với HM 

vậy A; H; M thẳng hàng

b) 

dễ chứng minh tam giác BHM đồng dạng với tam giác BCE \(\Rightarrow\frac{BH}{BC}=\frac{BM}{BE}\Rightarrow BH\cdot BE=BC\cdot BM\left(1\right)\)

dễ chứng minh tam giác CHM đồng dạng với tam giác CBD \(\Rightarrow\frac{CH}{BC}=\frac{CM}{CD}\Rightarrow CH\cdot CD=CM\cdot BC\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BE+CH\cdot CD=BM\cdot BC+CM\cdot BC=\left(BM+CM\right)\cdot BC=BC\cdot BC=BC^2\)

2)

a)

Xét tam giác ABC và tam giác DEC

có \(\widehat{BAC}=\widehat{CDE}\)

\(\widehat{ACB}\)chung

nên tam giác ABC đồng dạng với tam giác DEC

\(\Rightarrow\frac{AB}{DE}=\frac{AC}{CD}\left(1\right)\)

b)

Xét tam giác ABC

có AD là đường phân giác

\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}\Rightarrow\frac{AB}{BD}=\frac{AC}{CD}\left(2\right)\)

Từ (1) và (2) suy ra

\(\frac{AB}{DE}=\frac{AB}{BD}\Rightarrow DE=BD\)

22 tháng 2 2019

a,\(\Delta AFE\infty\Delta BFD\left(g.g\right)\)

b, \(\Delta CBE\infty\Delta CAD\left(g.g\right)\Rightarrow\frac{CB}{CA}=\frac{CE}{CD}\Rightarrow\frac{CB}{CE}=\frac{CA}{CD}\)

c, Tam giác CEB có CM là tia p/g của \(\widehat{ECB}\left(M\in EB\right)\left(gt\right)\Rightarrow\frac{CB}{CE}=\frac{MB}{ME}\)

\(\Delta CDA\) có CN là tia phân giác của \(\widehat{ACD}\left(gt\right)\Rightarrow\frac{CA}{CD}=\frac{AN}{ND}\)

Mà \(\frac{CB}{CE}=\frac{CA}{CD}\left(cmt\right)\Rightarrow\frac{MB}{ME}=\frac{AN}{ND}\Rightarrow AN.ME=MB.ND\)

11 tháng 3 2017

a) Xét tam giác BAD và tam giác MCD có:

góc BAD = MCD (gt)

góc ADB = CDM (2 góc đối đỉnh)

=> 2 tam giác trên đồng dạng => AB/CM = DB/DM => AB.DM = DB.CM

b) Tam giác BAD đồng dạng vói MCD (cmt) => góc ABD = CMD

Xét tam giác ABD và AMC có: góc BAD = MAC (gt)

                                            góc ABD = ACM (cmt)

=> 2 tam giác trên đồng dạng

Còn ý d bạn dùng định lý Ceva nha.


A B c D M

11 tháng 3 2017

chủ yếu là ý c thôi

7 tháng 11 2017

E A D C B G H I K F O

b) Do \(\widehat{E}=\widehat{F}\) nên \(\widehat{AEG}=\widehat{GEB}=\widehat{BAI}=\widehat{IAC}\).
Từ đó ta chứng minh được \(\Delta EGA\) ~ \(\Delta AGO\) (g.g) .
Suy ra \(\widehat{EAB}=\widehat{AOG}=90^o\), vì vậy \(GH\perp IK\).
Xét tam giác EIH có EO là đường phân giác và có \(EO\perp IK\left(\widehat{O}=90^o\right)\) nên tam giác EIH cân tại E.
Suy ra OI = OK.
Chứng minh tương tự ta có \(GO=HO\).
Có \(GH\perp IK\) tại O và O là trung điểm của GH và IK nên tứ giác GKHI là hình thoi.

7 tháng 11 2017

Sao lại có góc BAI và góc IAC nhìn hình vẽ đâu có thành góc gì đâu bạn