Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét (O) có
ΔDBC nội tiếp đường tròn(D,B,C∈(O))
BC là đường kính(gt)
Do đó: ΔDBC vuông tại D(Định lí)
⇒CD⊥BD tại D
⇒CD⊥AB tại D
⇒HD⊥AD tại D
Xét ΔADH có HD⊥AD tại D(cmt)
nên ΔADH vuông tại D(Định nghĩa tam giác vuông)
Ta có: ΔADH vuông tại D(cmt)
mà DI là đường trung tuyến ứng với cạnh huyền AH(I là trung điểm của AH)
nên \(DI=\dfrac{AH}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(1)
Xét (O) có
ΔBEC nội tiếp đường tròn(B,E,C∈(O))
BC là đường kính(gt)
Do đó: ΔBEC vuông tại E(Định lí)
⇒BE⊥CE tại E
⇒BE⊥AC tại E
⇒HE⊥AE tại E
Xét ΔAEH có AE⊥EH tại E(cmt)
nên ΔAEH vuông tại E(Định nghĩa tam giác vuông)
Ta có: ΔAEH vuông tại E(cmt)
mà EI là đường trung tuyến ứng với cạnh huyền AH(I là trung điểm của AH)
nên \(EI=\dfrac{AH}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)
Từ (1) và (2) suy ra ID=IE
hay I nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(3)
Ta có: OD=OE(=R)
nên O nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(4)
Từ (3) và (4) suy ra OI là đường trung trực của DE
hay OI⊥DE(đpcm)
câu a) bạn dựa vào đường cao nhé!(do góc bdc vuông, bec vuông)
b)bạn chỉ cần chứng minh adie là tứ giác nội tiếp ( adi+aei=180)
là có thề suy ra hai góc trên bằng nhau
Vì góc BOC= 180 độ=> sđ cung BC=180 độ => góc BEC=180/2=90 độ => BE vuông góc với AC=> BE là đường cao. Tương tự: có góc BDC=90 độ => DC là đường cao của tam giác ABC. Mà I là giao điểm của BE và CD => AI vuông góc với BC
a: Xét (O) có
ΔBDC nội tiếp đường tròn
BC là đường kính
Do đó: ΔBDC vuông tại D
Xét (O) có
ΔBEC nội tiếp đường tròn
BC là đường kính
Do đó: ΔBEC vuông tại E
a: Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó: ΔBDC vuông tại D
=>CD\(\perp\)AB tại D
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó;ΔBEC vuông tại E
=>BE\(\perp\)AC tại E
Xét ΔABC có
BE,CD là các đường cao
BE cắt CD tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC tại F
Xét tứ giác HECF có \(\widehat{HEC}+\widehat{HFC}=90^0+90^0=180^0\)
nên HECF là tứ giác nội tiếp
=>\(\widehat{HEF}=\widehat{HCF}\)
a:
góc BDC=góc BEC=1/2*sđ cung BC=90 độ
=>CD vuông góc AB và BE vuông góc AC
Xét ΔABC có
CD,BE là đường cao
CD cắt BE tại H
=>H là trực tâm
=>AH vuông góc BC
b: góc AEH+góc ADH=180 độ
=>AEHD nội tiếp đường tròn đường kính AH
=>I là trung điểm của AH
c: góc BDC=góc BEC=90 độ
=>BDEC nội tiếp đường tròn đường kính BC
=>O là trung điểm của BC
d: ID=IE
OD=OE
=>OI là trung trực của DE
=>OI vuông góc DE