Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng tỉ lệ thức ta có:
\(\frac{AD}{MB}=\frac{1}{2}\) hay \(\frac{AM}{1}=\frac{MB}{2}=\frac{AM+MB}{2}=\frac{12}{3}=4\)
=> AM = 4 (cm)
=> MB = 4. 2 = 8
b) Ta có: \(\frac{AM}{AB}=\frac{4}{12}=\frac{1}{3}\)
Vì MN // BC nên theo định lí Talét ta có:
\(\frac{AM}{AB}=\frac{AC}{AN}\) mà \(\frac{AM}{AB}=\frac{1}{3}\)
nên \(\frac{AN}{AC}=\frac{1}{3}\)
Vậy \(\frac{AN}{AC}=\frac{1}{3}\)
Bài làm
a) Vì AM/MB = 1/2
=> AM/1 = AB/2
Áp dụng tính chất dãy tỉ số bằng nhau có:
AM/1 + MB/2 = AM+MB/1+2 = AB/ 3 = 12/3 = 4
Do đó: AM/1 = 4 => AM = 4
MB/2 = 4 => MB = 8
Vậy AM = 4cm, MB = 8 cm
b) đề bị lỗi. Phải là MN //BC thì N mới thuộc AC nha.
Xét tam giác ABC có:
MN // BC
Theo hệ quả Thales có:
AM/AB = AN/AC
Hay AN/AC = AM/AM + BM
=> AN/AC = 1/3
Vậy tỉ số của AN/AC là 1/3
Gọi F, K lần lượt là giao của hai đường thẳng EM, DM với cạnh BC
Áp dụng định lí Ta – lét trong \(\Delta ABC\)có:
DK // AC \(\Rightarrow\frac{AD}{AB}=\frac{CK}{BC}\); EF // AB \(\Rightarrow\frac{AE}{AC}=\frac{BF}{BC}\left(1\right)\)
Áp dụng định lí Ta – lét trong \(\Delta ABN\)có:
MF // AB \(\Rightarrow\frac{MN}{AN}=\frac{FN}{BN}\left(2\right)\)
Áp dụng định lí Ta – lét trong \(\Delta ACN\)có:
MK // AC \(\Rightarrow\frac{MN}{AN}=\frac{NK}{NC}\left(3\right)\)
Từ (2) và (3) \(\Rightarrow\frac{MN}{AN}=\frac{FN}{BN}=\frac{NK}{NC}=\frac{FN+NK}{BN+NC}=\frac{FK}{BC}\left(4\right)\)
Từ (1) và (4) \(\Rightarrow\frac{AD}{AB}+\frac{AE}{AC}+\frac{MN}{AN}\)
\(=\frac{CK}{BC}+\frac{BF}{BC}+\frac{FK}{BC}=\frac{CK+BF+FK}{BC}=\frac{BC}{BC}=1\)
Vậy tổng \(\frac{AD}{AB}+\frac{AE}{AC}+\frac{MN}{AN}\)có giá trị không đổi.
:V chụp xong không gửi được cái phần kia nên mình chép ra vậy hình bạn tự vẽ nhé v
a) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
Xét tam giác ABC có MN//BC (gt)
\(\Rightarrow\frac{AM}{AB}=\frac{AN}{AC}=\frac{MN}{BC}\)( hệ quả của định lý Ta-let)
\(\Rightarrow\frac{3}{4}=\frac{AN}{8}=\frac{MN}{10}\)
\(\Rightarrow\hept{\begin{cases}AN=6\left(cm\right)\\MN=7,5\left(cm\right)\end{cases}}\)
b)Vì MI//AC (gt)
\(\Rightarrow MI//AK\left(K\in AB\right)\)
Vì IK//AB(gt)
\(\Rightarrow IK//AM\left(M\in AB\right)\)
Ta có: \(\hept{\begin{cases}MI//AK\left(cmt\right)\\IK//AM\left(cmt\right)\end{cases}\Rightarrow MI=AK}\)( tc cặp đoạn chắn)
Ta có: AM+MB=AB
\(\Rightarrow MB=1,5\left(cm\right)\)
Xét tam giác ABC có MI//AB(gt)
Cho biểu thức B=\(\frac{2x+1}{x^2-1}\); A= \(\frac{3x+1}{x^2-1}\)--\(\frac{x}{x-1}\)+\(\frac{x-1}{x+1}\) (x khác +,- 1; x khác \(\frac{-1}{2}\))
a) Tính giá trị của B biết x=-2
b) Rút gọn A
c) Cho P=A:B Tìm x biết P=3
Cho biểu thức A=\(\left(\frac{2x-3}{x^2-9}-\frac{2}{x+3}\right):\frac{x}{x+3}\)(x khác +,- 3)
a) Rút gọn A
b) TÍnh giá trị của A khi x=\(-\frac{1}{2}\)
c) Tìm các giá trị nguyên của x để A nhận giá trị nguyên
a) Vì \(AM = MB \Rightarrow M\) là trung điểm của \(AB\) (do \(M\) thuộc \(AB\))
\( \Rightarrow AM = \frac{1}{2}AB \Leftrightarrow \frac{{AM}}{{AB}} = \frac{1}{2}\);
Vì \(AN = NC \Rightarrow N\) là trung điểm của \(AC\) (do \(N\) thuộc \(AC\))
\( \Rightarrow AN = \frac{1}{2}AC \Leftrightarrow \frac{{AN}}{{AC}} = \frac{1}{2}\).
b) Vì \(\frac{{AM}}{{AB}} = \frac{1}{2};\frac{{AN}}{{AC}} = \frac{1}{2} \Rightarrow \frac{{AM}}{{AB}} = \frac{{AN}}{{AC}}\).
Xét tam giác \(ABC\) có \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}}\) nên áp dụng định lí Thales đảo ta được \(MN//BC\).
c) Xét tam giác \(ABC\) có \(MN//BC\) nên áp dụng hệ quả định lí Thales ta được \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}}\)
Mà \(\frac{{AM}}{{AB}} = \frac{1}{2} \Rightarrow \frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}} = \frac{1}{2}\).
Vậy \(\frac{{MN}}{{BC}} = \frac{1}{2}\) (điều phải chứng minh).