Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Kẻ BD vuông góc AC,CE vuông góc AB
góc BEC=góc BDC=90 độ
=>BEDC nội tiếp
=>góc AED=góc ACB
=>ΔAED đồng dạng vơi ΔACB
Tâm M của đường tròn ngoại tiếp tứ giác BDCE là trung điểm của BC
Gọi H là giao của BD và CE
=>AH vuông góc BC tại N
Gọi giao của OM với (O) là A'
ΔOBC cân tại O
=>OM vuông góc BC
AN<=A'M ko đổi
=>\(S_{ABC}=\dfrac{1}{2}\cdot AN\cdot BC< =\dfrac{1}{2}\cdot A'M\cdot BC_{kođổi}\)
Dấu = xảy ra khi A trùng A'
=>A là điểm chính giữa của cung BC
Vẽ các đường kính AM, BN, CP của (O). Dễ cm được BMCH, CNAH,APBH là các hình bình hành => AH = CN; BH = CM; CH = BM
=> AH + BH + CH = CN + CM + BM
Vì BC cố định nên CN không đổi => (AH + BH + CH) max khi (CM + BM) max. Ta sẽ cm rằng điều đó xảy ra khi M trùng điểm chính giữa cung nhỏ BC.
Thật vậy gọi Q là điểm chính giữa cung nhỏ BC. Kéo dài BQ đoạn QD = BQ = CQ, kéo dài BM đoạn ME = MC => BD = BQ + CQ = 2BQ và BE = BM + CM
Vì tg CQD cân tại Q => ^BDC = ^QCD = ^BQC/2
Tương tự tg CME cân tại M => ^BEC = ^MCE = ^BMC/2
Mà ^BMC = ^BQC => ^BEC = ^BDC => B,C,D,E cùng thuộc đường tròn đường kính BD => BE =< BD <=> BM + CM =< 2BQ => (BM + CM)
Max = 2BQ xảy ra khi E trùng D hay khi M trùng Q khi đó A là điểm chính giữa cung lớn BC