Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giác ABC vuông cân tại B.Trên cạnh BA và BC lấy hai điểm E và F sao cho BE = BF.Qua B và E kẻ đường vuông góc với AF,chúng cắt AC lần lượt ở I và K. EK cắt BC tại H
a)Chứng minh tam giác AHC cân
b)chứng minh I là trung điểm KC
c)Gọi M,N,P lần lượt là trung điểm EC,AF,EF
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)
câu c nè: mik ns ý chính nhé
h bạn kẻ tiếp tuyến tại A
chứng minh đc AO vuông góc vs MN
=> OA vuông góc vs EF
do OA cố định
=> đường thẳng qua A vuông góc vs EF luôn đi qua 1 điểm cố định
do câu a va b bn làm đc rồi nên mik nghĩ bn cx hok giỏi rồi nên mik làm tắt nha
A B C M N O S D H E F K P Q I J
a) Ta thấy \(\widehat{AMN}=\widehat{ABH}+\frac{1}{2}\widehat{BHQ}=\widehat{ACH}+\frac{1}{2}\widehat{CHP}=\widehat{ANM}\). Suy ra \(\Delta AMN\) cân tại A.
b) Dễ thấy tứ giác BEFC và BQPC nội tiếp, suy ra \(\widehat{HEF}=\widehat{HCB}=\widehat{HPQ}\), suy ra EF || PQ
Hiển nhiên \(OA\perp PQ\). Do đó \(OA\perp EF.\)
c) Gọi MK cắt BH tại I, NK cắt CH tại J, HK cắt BC tại S.
Vì A,K là trung điểm hai cung MN của (AMN) nên AK là đường kính của (AMN)
Suy ra \(MK\perp AB,NK\perp AC\)hay MK || CH, NK || BH
Ta có \(\Delta BHQ~\Delta CHP\), theo định lí đường phân giác và Thales thì:
\(\frac{IH}{IB}=\frac{MQ}{MB}=\frac{NP}{NC}=\frac{JH}{JC}\). Suy ra IJ || BC
Cũng từ MK || CH, NK || BH suy ra HIKJ là hình bình hành hay HK chia đôi IJ
Do vậy HK chia đôi BC theo bổ đề hình thang. Vậy HK đi qua S cố định.
a: Xét tứ giác AEHD có
\(\widehat{AEH}+\widehat{ADH}=90^0+90^0=180^0\)
=>AEHD là tứ giác nội tiếp
Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)
nên BEDC là tứ giác nội tiếp
b: Xét (O) có
\(\widehat{D'E'C}\) là góc nội tiếp chắn cung D'C
\(\widehat{D'BC}\) là góc nội tiếp chắn cung D'C
Do đó: \(\widehat{D'E'C}=\widehat{D'BC}\left(1\right)\)
Ta có: BEDC là tứ giác nội tiếp
=>\(\widehat{DEC}=\widehat{DBC}\)
=>\(\widehat{HED}=\widehat{D'BC}\left(2\right)\)
Từ (1),(2) suy ra \(\widehat{HED}=\widehat{HE'D'}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên DE//D'E'
Kẻ tiếp tuyến Ax của (O')
=>Ax\(\perp\)OA tại A
Xét (O) có
\(\widehat{xAB}\) là góc tạo bởi tiếp tuyến Ax và dây cung AB
\(\widehat{ACB}\) là góc nội tiếp chắn cung AB
Do đó: \(\widehat{xAB}=\widehat{ACB}\)
mà \(\widehat{ACB}=\widehat{AED}\left(=180^0-\widehat{BED}\right)\)
nên \(\widehat{xAB}=\widehat{AED}\)
mà hai góc này là hai góc ở vị trí so le trong
nên Ax//ED
Ta có: Ax//ED
OA\(\perp\)Ax
Do đó: OA\(\perp\)ED
c: Xét (O) có
ΔABA' nội tiếp
A'A là đường kính
Do đó: ΔABA' vuông tại B
=>AB\(\perp\)BA'
Xét (O) có
ΔACA' nội tiếp
A'A là đường kính
Do đó: ΔACA' vuông tại C
=>AC\(\perp\)CA'
Ta có: AC\(\perp\)CA'
BH\(\perp\)AC
Do đó: BH//A'C
Ta có: AB\(\perp\)BA'
CH\(\perp\)AB
Do đó: CH//BA'
Xét tứ giác BHCA' có
BH//CA'
BA'//CH
Do đó: BHCA' là hình bình hành
=>BC cắt HA' tại trung điểm của mỗi đường
mà I là trung điểm của BC
nên I là trung điểm của HA'
=>H,I,A' thẳng hàng