K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2018

a) Xét ΔABE  và ΔACF có

Alà góc chung

AEB=AFC(=90^O)

=> ΔABE đồng dạng ΔACF (g.g)

=>AF/AE​=AC/AB​

=> AB/AE​=AC/AF​

XétΔAEF và  ΔABC có

AB/AE​=AC/AF​

Và Agóc chung

Suy raΔAEF đồng dạngΔABC( c.g.c) 

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

Lời giải:

a) Mình đã trình bày tại đây:

Câu hỏi của Tân Nhỏ - Toán lớp 9 | Học trực tuyến

b)

Ta thấy \(\sin A=\frac{BK}{AB}\) \(\Rightarrow BK=AB\sin A\)

\(\Rightarrow A_{ABC}=\frac{BK.AC}{2}=\frac{AB.\sin A.AC}{2}=\frac{\sin A.AB.AC}{2}\)

Hoàn toàn tương tự: \(S_{AIK}=\frac{\sin A.AI.AK}{2}\)

Do đó:

\(\frac{S_{AIK}}{S_{ABC}}=\frac{\sin A.AI.AK}{2}:\frac{\sin A.AB.AC}{2}=\frac{AI}{AC}.\frac{AK}{AB}\)

\(=\cos \widehat{IAC}.\cos \widehat{BAK}=\cos A.\cos A=\cos 60.\cos 60=\frac{1}{4}\)

\(\Rightarrow S_{AIK}=\frac{S_{ABC}}{4}=\frac{160}{4}=40(cm^2)\)

30 tháng 6 2019

Cảm ơn

29 tháng 10 2021

Xét tam giác ABC nhọn có \(BC^2=AB^2+AC^2-2AB\cdot AC\cdot\cos\widehat{A}\)
\(\Rightarrow\cos\widehat{A}=\dfrac{AB^2+AC^2-BC^2}{2AB\cdot AC}=\dfrac{AB^2+AC^2-BC^2}{4\cdot\dfrac{1}{2}AB\cdot AC}=\dfrac{AB^2+AC^2-BC^2}{4S_{ABC}}\)

Cmtt: \(\left\{{}\begin{matrix}\cos\widehat{B}=\dfrac{AB^2+BC^2-AC^2}{4S_{ABC}}\\\cos\widehat{C}=\dfrac{AC^2+BC^2-AB^2}{4S_{ABC}}\end{matrix}\right.\)
\(\Rightarrow\cos\widehat{A}+\cos\widehat{B}+\cos\widehat{C}\\ =\dfrac{AB^2+AC^2-BC^2+AB^2+BC^2-AC^2+AC^2+BC^2-AB^2}{4S_{ABC}}\\ =\dfrac{AB^2+AC^2+BC62}{4S_{ABC}}\)