Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi I là giao điểm của AH và ED
Xét tam giác ABC có:
E là trung điểm AC
D là trung điểm AB
Vậy: ED là đg tr/bình của tam giác ABC
=> ED // BC (t/chất đg tr/bình của tam giác)
Mà: AH vuông góc BC
=> AH vuông góc ED (từ vuông góc đến //) (1)
Xét tam giác ABH có:
D là tr/điểm AB
ID // BC (I thuộc ED; ED // BC)
Vậy: I là tr/điểm AH (2)
Từ (1) và (2)
=> A và H đối xứng nhau qua DE
b) Vẽ đường cao FQ (trong DEFH ý)
Có: IH vuông góc ED
FQ vuông góc ED
Vậy: IH // FQ (từ vuông góc đến //)
Có: DE // BC
Mà: HF thuộc BC
=> HF // DE
=> DEFH là h/thang
Xét tam giác EIH và tam giác DQF có:
IH = FQ (IH và FQ là đg cao của h/thang DEFH) (P/s: 2 đường cao hạ từ đỉnh xuống cạnh đối diện với điều kiện 2 cạnh đó phải // thì 2 đg cao đó sẽ = nhau)
Góc I = góc Q (=90 độ)
Góc EHI = góc QFD (2 góc đồng vị)
Vậy: tam giác EIH = tam giác DQF (g-c-g)
=> HE = FD (2 cạnh tương ứng)
c) Có: DEFH là hình thang (c/minh ở câu b)
Góc IEH = góc QDF (tam giác EIH = tam giác DQF)
Vậy: Hình thang DEFH là h/thang cân
a)gọi giao điểm của DE và AH là K
Xét tam giác ABC có:
D là trung điểm của AB(gt)
E là trung điểm của AC(gt)
=>DE là đường trung bình của tam giác ABC(định nghĩa)
=>DE//BC(t/c)
mà AH vuông góc vs BC(gt)
=> AH vuông góc vs DE ( từ vuông góc đến //)
Xét tam giác AHC có
KE//BC(cmt)
E là trung điểm của AC
=> K là trung điểm của AH(định lý)
Có AH vuông góc vs DE tại K (cmt)
K là trung điểm của AH (cmt)
=> DE là đường trung trực của AH
=> A và H đối xứng nhau qua DE ( định nghĩa)
Vậy A và H đối xứng nhau qua DE
b)Có DE là đường trung trực của AH
=> AE=EH(t/c)(1)
Xét tam giác ABC có: D là trung điểm AB(gt)
F là trung điểm BC(gt)
=> DF là đường trung bình của tam giác ABC(định nghĩa)
=> DF=1/2 AC(t/c)
mà AE=1/2AC( E là trung điểm AC)=> DF=AE(2)
từ (1) và (2)=>DF=HE
Vậy DF= HE
c)Xét hình thang DEFH ( DE//FH) có
DF=HE(cmt)
=> DEFH là hình thang cân (dhnb)
Vậy DEFH là hình thang cân
A B C I H K F E a) Theo gt ta có :
FD // AC => FD // AE ( E \(\in AC\)) ( 1)
DE // AB => DE // AF ( F \(\in AB\) ) (2)
từ (1)(2) \(\Rightarrow AEDF\) là hình bình hành ( theo dấu hiệu nhận biết hình bình 1)
b)
theo a) tao có AEDF là hình bình hành
hình bình hành có 2 đường chéo AD và EF giao nhau tại I
=> I là trung điểm của 2 đường chéo AD và EF ( t/c hình bình hành )
=> \(IF=IE\) hay F đối xứng với E qua I
a)Xét tứ giác AEDF có: DE//AB, DF//AC
\(\Rightarrow\)AEDE là hình bình hành
b) Vì 2 đường chéo của hình bình hành cắt nhau tại trung điểm mỗi đường nên IA=ID, IF=IE suy ra E đối xứng với F qua I
Lời giải:
a)
Ta có : \(\left\{\begin{matrix} \widehat{EHB}=\widehat{DHC}\\ `\widehat{HEB}=\widehat{HDC}\end{matrix}\right.\Rightarrow \triangle EHB\sim \triangle DHC\)
\(\Rightarrow \frac{EH}{HB}=\frac{DH}{HC}\Leftrightarrow \frac{EH}{HD}=\frac{HB}{HC}\)
Kết hợp với \(\widehat{EHD}=\widehat{BHC}\Rightarrow \triangle EHD\sim \triangle BHC(c.g.c)\)
Ta có đpcm.
b)
Theo phần a, \(\triangle EHD\sim \triangle BHC\Rightarrow \widehat{HED}=\widehat{HBC}\Rightarrow 90^0-\widehat{HED}=90^0-\widehat{HBC} \)
\(\Leftrightarrow \widehat{DEA}=\widehat{DCB}\) . Mà \(\widehat{DEA}=\widehat{PEB}\Rightarrow \widehat{PEB}=\widehat{DCB}\)
Có \(\left\{\begin{matrix} \widehat{BPE}=\widehat{BDC}\\ \widehat{PEB}=\widehat{DCB}\end{matrix}\right.\Rightarrow \triangle BPE\sim \triangle BDC\Rightarrow \frac{PE}{DC}=\frac{BE}{BC}(1)\)
Tương tự \(\triangle CDQ\sim \triangle CBE\Rightarrow \frac{DQ}{BE}=\frac{CD}{BC}(2)\)
Từ \((1),(2)\Rightarrow \frac{PE.BE}{DC.DQ}=\frac{BE}{DC}\Rightarrow \frac{PE}{DQ}=1\leftrightarrow PE=DQ\)
c) Gọi \(T\equiv HM\cap IK\)
Ta có \(\widehat{NAK}=\widehat{HBM}(=90^0-\widehat{ACB})(1)\)
Xét tứ giác \(HDKT\) có \(\widehat{HDK}=\widehat{HTK}=90^0\Rightarrow \widehat{DKT}+\widehat{DHT}=180^0\)
\(\Leftrightarrow \widehat{AKN}=\widehat{DKT}=180^0-\widehat{DHT}=\widehat{MHB}(2)\)
Từ \((1),(2)\Rightarrow \triangle NAK\sim \triangle MBH\Rightarrow \frac{NK}{MH}=\frac{NA}{MB}\)
Tương tự, \(\triangle AIN\sim \triangle CHM\Rightarrow \frac{AN}{CM}=\frac{IN}{HM}\)
Từ hai tỉ số trên suy ra \(1=\frac{CM}{BM}=\frac{NK}{IN}\Rightarrow NK=IN\)
Vậy \(N\) là trung điểm của $IK$
a: BC=10cm
=>AM=5cm
b: Xét tứ giác NBDC có
M là trung điểm của BC
M là trung điểm của ND
Do đó: NBDC là hình bình hành
c: Xét tứ giác ACDN có
CD//AN
CD=AN
Do đó: ACDN là hình bình hành
mà \(\widehat{CAN}=90^0\)
nên ACDN là hình chữ nhật
Vào đâytham khảo nè :
https://hoc24.vn/hoi-dap/question/93163.html