Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao điểm của hai trung tuyến BN và CM là : G ( sửa đề tí nhé ^-^)
Tia AG cắt BC tại D ( D ∈ BC )
Ta có : BD = DC \(\Rightarrow BC=2BD=2GD\) ( Do tam giác GDC vuông tại G )
Ta cũng có : AD = 3DG
Xét tam giác AHB vuông tại H có :
\(cotB=\dfrac{BH}{AH}\)
TT , \(cotC=\dfrac{HC}{AH}\)
\(\Rightarrow cotB+cotC=\dfrac{BC}{AH}=\dfrac{2GD}{AH}\ge\dfrac{2DG}{AD}=\dfrac{2DG}{3DG}=\dfrac{2}{3}\)
có đâu, sáng con ko ăn, đói qá ms ăn, tối thì ko bao j, đói qá lấy sữa ống hoy ^^~~
Bài Làm:
vẽ AH vuông góc với BC
\(\Rightarrow\cot B=\frac{BH}{AH}\left(\Delta ABH;\widehat{H}=1v\right)\)
\(\Rightarrow\cot C=\frac{HC}{AH}\left(\Delta HCA;\widehat{H}=1v\right)\)
\(\Rightarrow\cot B+\cot C=\frac{BC}{AH}\left(1\right)\)
Gọi G là giao điểm 2 đường trung tuyến BM ; CN
Nếu AG cắt BC tại I thì AI - đường trung tuyến tam giác ABC
Suy ra BI = IC
suy ra GI - đường trung tuyến tam giác GBC vuông tại G
\(\Rightarrow BC=2GI\left(2\right)\)
\(AH\le AI\le3GI\left(3\right)\)
\(\Rightarrow\cot B+\cot C=\frac{BC}{AH}\ge\frac{2AI}{3AI}=\frac{2}{3}\)
Vậy \(\cot B+\cot C\ge\frac{2}{3}\left(đpcm\right)\)
Dấu "=" xảy ra khi \(AH\equiv AI\)
\(\Rightarrow\Delta ABC\)cân tại A
a/ BN và CN cắt nhau tại I => \(NI=\frac{BI}{2}\) và \(MI=\frac{CI}{2}\)
+ Ta có \(AC=2CN\Rightarrow AC^2=4CN^2\)và \(AB=2BM\Rightarrow AB^2=4BM^2\)
+ Xét tg vuông BIM có \(BM^2=BI^2+MI^2\Rightarrow4BM^2=AB^2=4\left(BI^2+MI^2\right)=4\left(BI^2+\frac{CI^2}{4}\right)\)
+ Xét tg vuông CIN có \(CN^2=CI^2+NI^2\Rightarrow4CN^2=AC^2=4\left(CI^2+NI^2\right)=4\left(CI^2+\frac{BI^2}{4}\right)\)
\(\Rightarrow AB^2+AC^2=4\left[\left(BI^2+CI^2\right)+\frac{BI^2+CI^2}{4}\right]\)
Mà trong tg vuông BIC có \(BC^2=BI^2+CI^2\)
\(\Rightarrow AB^2+AC^2=4\left(BC^2+\frac{BC^2}{4}\right)=5BC^2\)
b/
Cho hình vẽ
Gọi G là trọng tâm của ABC
Trước hết tìm cot B và cot C trong hình tam giác. Việc kẻ đường cao AH cho ta ngay kết quả;
cot B + cot C \(=\frac{BH}{AH}+\frac{CH}{AH}=\frac{BC}{AH}\)
Lại nhận thấ \(AM\ge AH\)
Lưu ý; Do \(\frac{T}{C}\) là đường xiên lớn hơn đường vuông góc
Hơn nữa dùng giả thiết \(BM\downarrow CN\) ta có \(GM=\frac{1}{2}BC\)
Như vậy \(BC=2GM=\frac{2AM}{3}\ge\frac{2AH}{3}v\Rightarrow cotB+cotC=\frac{BC}{AH}\ge\frac{2}{3}\)