Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
b) Xét tam giác AEF và tam giác ABC :
Góc BAC chung
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
⇒ Tam giác AEF ~ tam giác ABC
⇒ góc AEF = góc ABC ( đề sai nhé )
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc A chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF và AE/AB=AF/AC
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng với ΔABC
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C E F H I
Giải
a) Xét \(\Delta BHF\) và \(\Delta CHE\) có:
\(\widehat{BHF}=\widehat{CHE}\) (vì đối đỉnh)
\(\widehat{BFH}=\widehat{CEH}=90^o\)
=> \(\Delta BHF\) s \(\Delta CHE\) (g - g)
b) Xét \(\Delta ABE\) và \(\Delta ACF\) có:
\(\widehat{A}\) là góc chung
\(\widehat{AEB}=\widehat{AFC}=90^o\)
=> \(\Delta ABE\) s \(\Delta ACF\) (g - g)
=> \(\frac{AB}{AC}=\frac{AE}{AF}\)
=> AF . AB = AE . AC
c) Xét \(\Delta AEF\) và \(\Delta ABC\) có:
\(\widehat{A}\) là góc chung
\(\frac{AE}{AB}=\frac{AF}{AC}\) (vì \(\Delta ABE\) s \(\Delta ACF\))
=> \(\Delta AEF\)s \(\Delta ABC\) (c - g - c)
d) Câu d mình không nghĩ ra. Bạn tự làm nha, chắc là xét tam giác đồng dạng rồi suy ra hai góc bằng nhau và sẽ suy ra đường phân giác đó.
![](https://rs.olm.vn/images/avt/0.png?1311)
mk chỉnh lại đề: Cho tam giác ABC nhọn đường cao BE, CF.....
a) Xét \(\Delta ABE\)và \(\Delta ACF\) có:
\(\widehat{A}\) chung
\(\widehat{AEB}=\widehat{AFC}=90^0\)
suy ra: \(\Delta ABE~\Delta ACF\)(g.g)
\(\Rightarrow\)\(\frac{AB}{AC}=\frac{AE}{AF}\)
\(\Rightarrow\)\(AB.AF=AE.AC\)
b) \(\frac{AB}{AC}=\frac{AE}{AF}\) (câu a)
\(\Rightarrow\)\(\frac{AB}{AE}=\frac{AC}{AF}\)
Xét \(\Delta ABC\)và \(\Delta AEF\)có:
\(\widehat{A}\)chung
\(\frac{AB}{AE}=\frac{AC}{AF}\)
suy ra: \(\Delta ABC~\Delta AEF\)(c.g.c)
\(\Rightarrow\)\(\widehat{ACB}=\widehat{AFE}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét \(\Delta AEB\) và \(\Delta AFC\) có:
\(\widehat{AEB}=\widehat{AFC}=90^0\)
\(\widehat{A}\) chung
suy ra: \(\Delta AEB~\Delta AFC\) (g.g)
\(\Rightarrow\)\(\frac{AE}{AF}=\frac{AB}{AC}\) \(\Rightarrow\)\(AF.AB=AE.AC\)
b) \(\frac{AE}{AF}=\frac{AB}{AC}\)\(\Rightarrow\)\(\frac{AE}{AB}=\frac{AF}{AC}\)
Xét \(\Delta AEF\)và \(\Delta ABC\) có:
\(\frac{AE}{AB}=\frac{AF}{AC}\) (cmt)
\(\widehat{A}\) chung
suy ra: \(\Delta AEF~\Delta ABC\) (c.g.c)
\(\Rightarrow\) \(\widehat{AEF}=\widehat{ABC}\)
c) \(\Delta AEF~\Delta ABC\)
\(\Rightarrow\)\(\frac{S_{ABC}}{S_{AEF}}=\left(\frac{AB}{AE}\right)^2=\left(\frac{3}{6}\right)^2=\frac{1}{4}\)
\(\Rightarrow\)\(S_{ABC}=4S_{AEF}\)
Gửi các bạn lời giải 1 bài tương tự
https://youtu.be/mjiZSkISHgA
A B C H E F D I
Phần c) trước hết ta chứng minh HD là phân giác của \(\widehat{FID}\)
Xét \(\Delta DBH\)và \(\Delta EBC\)có
\(\widehat{BDH}=\widehat{BEC}\left(=90^0\right)\)
\(\widehat{CBE}\)chung
\(\Delta DBH\approx\Delta EBC\left(g.g\right)\)
\(\Rightarrow\frac{BD}{BE}=\frac{BH}{BC}\)(2 cặp cạnh tương ứng tỉ lệ)
\(\Rightarrow\frac{BD}{BH}=\frac{BE}{BC}\)(tính chất của tỉ lệ thức)
Xét \(\Delta BDE\)và \(\Delta BHC\)có:
\(\widehat{CBE}\)chung
\(\frac{BD}{BH}=\frac{BE}{BC}\)(chứng minh trên)
\(\Delta BDE\approx\Delta BHC\left(c.g.c\right)\)
\(\Rightarrow\widehat{BED}=\widehat{BCH}\)(2 góc tương ứng)
\(\Rightarrow\widehat{BED}=\widehat{BCF}\)
Ta có:
\(\widehat{BED}+\widehat{DEC}=90^0\left(=\widehat{BEC}\right)\)
\(\Rightarrow\widehat{BCF}+\widehat{DEC}=90^0\)
Và vì \(\Delta FBC\)vuông tại F
\(\Rightarrow\widehat{BCF}+\widehat{FBC}=90^0\)(vì phu nhau)
Do đó :\(\widehat{DEC}=\widehat{FBC}\)(cùng phụ với \(\widehat{BCF}\))
\(\Rightarrow\widehat{DEC}=\widehat{FBD}\)
Chứng minh tương tự, ta được: \(\widehat{BFD}=\widehat{ECD}\)
Xét \(\Delta BFD\)và \(\Delta ECD\)có:
\(\widehat{BFD}=\widehat{ECD}\)(chứng minh trên)
\(\widehat{FBD}=\widehat{CED}\)(chứng minh trên)
\(\Rightarrow\Delta BFD\approx\Delta ECD\left(g.g\right)\)
\(\Rightarrow\widehat{BDF}=\widehat{EDC}\)(2 góc tương ứng)