Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác DHEC có
góc HDC+góc HEC=180 độ
nên DHEC là tứ giác nội tiếp
b: Xét tứ giác ABDE có
góc AEB=góc ADB=90 độ
Do đo; ABDE là tứ giác nội tiếp
a) Ta có AD là đường cao của △ABC (gt)
=> AD⊥BC => \(\widehat{CDA} = 90^o\)
Tương tự ta có \(\widehat{CEB}=90^o \)
Tứ giác CEHD có : \(\widehat{CDA} + \widehat{CEB} = 90^o + 90^o = 180^o \) => Tứ giác CEHD là tứ giác nội tiếp => 4 điểm C,H,D,E cùng thuộc 1 đường tròn
b) △AEH và △ADC , có
\(\begin{cases} \widehat{AEH}=\widehat{ADC}=90^o\\ \widehat{CAD} ( góc chung ) \end{cases} \)=> △AEH đồng dạng với △ADC ( g.g)
=> \(\dfrac{AE}{AD}=\dfrac{AH}{AC} \) ( tỉ số đồng dạng ) => AE.AC = AH.AD (1)
Ta có \(\widehat{AFC} = 90^o \) ( góc nội tiếp chắn nửa đường tròn )
△AFC vuông tại F , có FE là đường cao ( BF ⊥ AC tại E ) => \(AF^2\) = AE.AC ( hệ thức lượng ) (2)
Từ (1) và (2) => \(AF^2= AH.AD\)
a: Xét tứ giác BMNC có
\(\widehat{BMC}=\widehat{BNC}=90^0\)
Do đó: BMNC là tứ giác nội tiếp
a: Xét tứ giác AEHF có
\(\widehat{AEH}+\widehat{AFH}=180^0\)
Do đó: AEHF là tứ giác nội tiếp
1: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
2: Gọi Ax là tiếp tuyến tại A của (O)
góc xAC=1/2*sđ cung AC
góc ABC=1/2*sđ cung AC
=>góc xAC=góc ABC
mà góc ABC=góc AEF
nên góc AEF=góc xAC
=>EF//Ax
=>OA vuông góc EF