K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2017

A B C H D E F

a) DE là đường trung bình của tam giác nên DE//BC và DE = 1/2 BC = BF

=> BDEF là hình bình hành vì có cặp cạnh đối DE và BF song song và bằng nhau.

b) Tam giác vuông HBA có HD là trung tuấn ứng với cạnh huyền => HD = 1/2 AB = BD

=> Tam giác DBH cân tại D.

c) Điểm G ở đâu hả bạn?

23 tháng 10 2017

a. Xét ∆AHB vuông tại H có HM là đường 

đường trung tuyến ( gt ) nên HM =

2AB( 1 ) 

Trong ∆ABC có N là trung điểm của AC ( gt ) O

và K là trung điểm của BC ( gt ) nên NK là 

đường trung bình của ∆ABC → NK = 2AB(  2 ) B H K C

Từ ( 1 ) & ( 2 ) → HM = NK I

b) Trong ∆AHC vuông tại H có HN là đường trung tuyến ( gt ) nên HN = AC( 3 )

+ ∆ABC có M là trung điểm của AB ( gt ) và K là trung điểm của BC ( gt ) nên MK là 

đường trung bình của ∆ABC → MK = AC ( 4)

Từ ( 3 ) & ( 4 ) → HN = 2MK (a)

+ ∆ABC có M là trung điểm của AB ( gt ) và N là trung điểm của AC ( gt ) nên MN là 

đường trung bình của ∆ABC → MN // BC hay MN // KH 

→ MNKH là hình thang (b). Từ (a) & (b) → MNKH là hình thang cân.

28 tháng 10 2021

có chứ sao ko hihi

29 tháng 10 2021

có chứ

7 tháng 10 2021

\(a,\left\{{}\begin{matrix}AE=EB\\AF=FC\end{matrix}\right.\Rightarrow EF\) là đtb tam giác ABC

\(\Rightarrow EF//BC\Rightarrow BEFC\) là hthang 

\(b,EF//BC\Rightarrow EF//GH\Rightarrow EFGH\) là hthang

Có HF là trung tuyến ứng cạnh huyền tam giác AHC nên \(HF=\dfrac{1}{2}AC\)

Mà \(\left\{{}\begin{matrix}AE=EB\\BG=GC\end{matrix}\right.\Rightarrow EG\) là đtb tg ABC \(\Rightarrow EG=\dfrac{1}{2}AC\)

Do đó \(HF=EG\) nên EFGH là hthang cân

12 tháng 4 2020

a) Xét \(\Delta\)ABC ta có : 

M là trung điểm AB 

N là trung điểm AC 

=> MN là đường trung bình 

=> MN//BC , MN = 1/2 BC (1)

=> MNCB là hình thang 

b) Xét tam giác ABC ta có : 

N , P là trung điểm AC , BC (2)

=> NP là đường trung bình 

Từ (1) và (2) => MNPB là hình bình hành

15 tháng 4 2020

a) Xét \(\Delta\)ABC có: M; N là trung điểm của AB; AC 

=> MN là đường trung bình của \(\Delta\)ABC  (1)

=> MN//BC 

=> BCNM là hình thang 

b) (1) => MN //= \(\frac{1}{2}\) BC  mà BP = \(\frac{1}{2}\)BP  va B; P; C thẳng hàng  ( vì P là trung điểm BC ) 

=> MN// = BP => MNPB là hình bình hành 

c) MN // BC => MN // HP => MNHP là hình thang 

(b) => ^MNP = ^MBP => ^MNP = ^MBH (2) 

Lại có: ^NMH = ^MHB ( so le trong )  ( 3) 

Mặt khác: \(\Delta\)AHB vuông tại H có HM là trug tuyến đáy AB 

=> HM = \(\frac{1}{2}\)AB = BM 

=> \(\Delta\)MHB cân tại M => ^MBH = ^MHB  (4) 

Từ (2) ; (3) ; (4) => ^NMH = ^MNP 

=> MNPH là hình thang cân 

b) Điều kiện để HPNM là hình chữ nhật: 

Ta có: HPNM là hình thang cân

=> HPNM là hình chữ nhật  MH vuông góc BC 

Mặt khác ta có: AH vuông góc BC 

=> A; M; H thẳng hàng mà A; M; B thẳng hàng 

=> H trùng B 

=> Tam giác ABC vuong tại B.

15 tháng 4 2020

a) tam giác ABC có M ; N là trug điểm của AB ; AC

=) MN là trug bình của TG ABC (1)

=) MN/BC

=) BCNM là hình thag 

(mik chia ra nhé)