K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔOKB vuông tại K và ΔOHC vuông tại H co

góc KOB=góc HOC

=>ΔOKB đồng dạng với ΔOHC

d: góc BKC=góc BHC=90 độ

=>BKHC nộitiếp

=>góc AKH=góc ACB

=>ΔAKH đồng dạng với ΔACB

=>\(\dfrac{S_{AKH}}{S_{ACB}}=\left(\dfrac{AK}{AC}\right)^2=\dfrac{1}{4}\)

=>\(S_{ABC}=32\left(cm^2\right)\)

5 tháng 8 2021

cho mik xin câu a b đi bạn

 

25 tháng 10 2021

undefinedundefined

đây là đáp án bạn nhé

26 tháng 10 2021

undefined

ảnh kia của mình nó bị thiếu nhé

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

góc BAD chung

=>ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC

=>AD*AC=AE*AB; AD/AB=AE/AC

b: Xet ΔADE và ΔABC có

AD/AB=AE/AC

góc DAE chung

=>ΔADE đồng dạng với ΔABC

30 tháng 3 2023

còn câu c nữa bạn.:((

29 tháng 4 2020

A B C H K

Bài làm

a) Xét tam giác ABH và tam giác ACK có:

\(\widehat{AHB}=\widehat{AKC}\left(=90^0\right)\)

\(\widehat{BAC}\) chung

=> Tam giác ABH ~ Tam giác ACK ( g - g )

b)

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc B chung

=>ΔABH đồng dạng với ΔCBA

b: Xét ΔCAM có

CK,AH là đường cao

CK cắt AH tại I

=>I là trực tâm

=>MI vuông góc AC

=>MI//AB

Xét ΔHAB có 

M là trung điểm của HB

MI//AB

=>I là trung điểm của AH

=>IA=IH

17 tháng 5 2023

mình cần gâps huhu

 

11 tháng 3 2019

A B C E F H I

Giải

a) Xét \(\Delta BHF\) và \(\Delta CHE\) có:

\(\widehat{BHF}=\widehat{CHE}\) (vì đối đỉnh)

\(\widehat{BFH}=\widehat{CEH}=90^o\)

=> \(\Delta BHF\)  s  \(\Delta CHE\) (g - g)

b) Xét \(\Delta ABE\) và \(\Delta ACF\) có:

\(\widehat{A}\) là góc chung

\(\widehat{AEB}=\widehat{AFC}=90^o\)

=> \(\Delta ABE\)  s  \(\Delta ACF\) (g - g)

=> \(\frac{AB}{AC}=\frac{AE}{AF}\)

=> AF . AB = AE . AC

c) Xét \(\Delta AEF\) và \(\Delta ABC\) có:

\(\widehat{A}\) là góc chung

\(\frac{AE}{AB}=\frac{AF}{AC}\) (vì \(\Delta ABE\) s \(\Delta ACF\)

=> \(\Delta AEF\)s \(\Delta ABC\) (c - g - c)

d) Câu d mình không nghĩ ra. Bạn tự làm nha, chắc là xét tam giác đồng dạng rồi suy ra hai góc bằng nhau và sẽ suy ra đường phân giác đó.