Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài toán thiếu dữ kiện là điểm O. (Có khả năng O là tâm đường tròn ngoại tiếp tam giác ABC). Bạn xem lại đề bài có phải thế không?
a/ Nối B với O cắt đường tròng tại K ta có
\(\widehat{BCK}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow CK\perp BC\)
\(AH\perp BC\) (AH là đường cao của tg ABC)
=> AH//CK (cùng vuông góc với BC) (1)
Ta có
\(\widehat{BAK}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow AK\perp AB\)
\(CH\perp AB\) (CH là đường cao của tg ABC)
=> AK//CH (cùng vuông góc với AB) (2)
Từ (1) và (2) => AKCH là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một thì tứ giác đó là hbh)
=> AH=CK (Trong 1 hbh các cặp cạnh đối bàng nhau từng đôi một)
Xét \(\Delta BCK\) có
OB=OK; BM=CM => OM là đường trung bình của tg BCK \(\Rightarrow OM=\frac{1}{2}CK\) mà \(AH=CK\Rightarrow OM=\frac{1}{2}AH\left(dpcm\right)\)
b/
Do OM là đường trung bình của tg BCK nên OM//CK mà CK//AH => OM//AH
Gọi G' là giao của AM với HO. Xét tg AHG' và tg MOG' có
\(\widehat{HAG'}=\widehat{OMG'}\) (góc so le trong)
\(\widehat{AG'H}=\widehat{MG'O}\) (góc đối đỉnh)
=> tg AHG' đồng dạng với tg MOG' \(\Rightarrow\frac{MG'}{AG'}=\frac{OM}{AH}=\frac{1}{2}\)
G' thuộc trung tuyến AM của tg ABC => G' là trọng tâm của tg ABC => G' trùng G => H,G,O nằm trên 1 đường thẳng (dpcm)
\(OE=OB=\dfrac{1}{2}BC\Rightarrow\widehat{OBE}=\widehat{OEB}\)
\(\widehat{AHE}=\widehat{BHO}\) ; \(\widehat{BHO}+\widehat{HBD}=90^0\)
\(\Rightarrow\widehat{AHE}+\widehat{HBD}\left(\widehat{OBE}\right)=90^0\)
\(\Rightarrow\widehat{AHE}+\widehat{OEB}=90^0\)
\(IE=IH=r\Rightarrow\widehat{AHE}=\widehat{IEH}\)
\(\Rightarrow\widehat{IEH}+\widehat{OEB}=90^0\Rightarrow IE\perp OE\)