Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C O D E S F N M I
a) Bổ đề: Xét tam giác ABC cân tại A, một điểm M bất kì sao cho ^AMB = ^AMC. Khi đó MB = MC.
Bổ đề chứng minh rất đơn giản, không trình bày ở đây.
Áp dụng vào bài toán: Vì E là điểm chính giữa (BC nên EB = EC = ED => \(\Delta\)BED cân tại E
Ta có ^BAE = ^CAE (2 góc nội tiếp chắn hai cung bằng nhau) hay ^BAE = ^DAE
Áp dụng bổ đề vào \(\Delta\)BED ta được AB = AD. Khi đó AE là trung trực của BD => AE vuông góc BD
Lại có \(\Delta\)BAD ~ \(\Delta\)CFD (g.g). Mà AB = AD nên FD =FC. Từ đó EF vuông góc DC
Xét \(\Delta\)AEF có FD vuông góc AE (cmt), AD vuông góc EF (cmt) => D là trực tâm \(\Delta\)AEF (đpcm).
b) Gọi DN cắt EC tại I. Ta dễ thấy ^MDI = ^MDN = ^MBN = ^MBC = ^MEC = ^MEI
Suy ra bốn điểm D,E,M,I cùng thuộc một đường tròn => ^EMD = ^EID = 900
Nếu ta gọi MD cắt cung lớn BC của (O) tại S thì ^EMS chắn nửa (O) hay ES là đường kính của (O)
Mà E là điểm chính giữa cung nhỏ BC nên S là điểm chính giữa cung lớn BC
Do đó S là điểm cố định (Vì B,C cố định). Vậy MD luôn đi qua S cố định (đpcm).
B C O A D d M K E N I H F P d'
1) Xét nửa đường tròn (O) đường kính BC có điểm N thuộc (O) => ^CNB = 900
=> ^CNE = 1800 - ^CNB = 900. Xét tứ giác CDNE có:
^CDE = ^CNE = 900 => Tứ giác CDNE nội tiếp đường tròn (đpcm).
2) Ta có điểm M thuộc nửa đường tròn (O) đường kính BC => ^CMB = 900
=> BM vuông góc CE. Xét \(\Delta\)BEC:
BM vuông góc CE; ED vuông góc BC; BM giao ED tại K => K là trực tâm \(\Delta\)BEC
=> CK vuông góc BE. Mà CN vuông góc BE (Do ^CNB = 900) => 3 điểm C;K;N thẳng hàng (đpcm).
3) Gọi giao điểm của MN với DE là H. Lấy F là trung điểm của EH. BH cắt CF tại điểm P.
Xét tứ giác CMHD: ^CMH = ^CDH = 900 => CMKD nội tiếp đường tròn => ^MCK = ^MDK (1)
Tương tự: ^NBK = ^NDK (2)
Từ (1) & (2) => ^MDK = ^NDK hay ^MDH = ^FDN
Tương tự: ^DMB = ^NMB => ^DMH = 2.^DMB (3)
Dễ thấy tứ giác BDME nội tiếp đường tròn => ^DMB = ^BED (2 góc nt chắn cung BD)
Hay ^DMB = ^NEF. Xét \(\Delta\)ENH vuông tại N: H là trung điểm EH
=> \(\Delta\)NEF cân tại F. Do ^DFN là góc ngoài \(\Delta\)NEF => ^DFN = 2.^NEF
Mà ^DMB = ^NEF (cmt) => ^DFN = 2.^DMB (4)
Từ (3) & (4) => ^DMH = ^DFN. Xét \(\Delta\)DMH và \(\Delta\)DFN:
^DMH = ^DFN ; ^MDH = ^FDN (cmt) => \(\Delta\)DMH ~ \(\Delta\)DFN (g.g)
=> \(\frac{DM}{DF}=\frac{DH}{DN}\)=> \(DH.DF=DM.DN\)(5)
Dễ chứng minh \(\Delta\)CMD ~ \(\Delta\)NBD => \(\frac{DM}{DB}=\frac{DC}{DN}\Rightarrow DM.DN=DB.DC\)(6)
Từ (5) & (6) => \(DH.DF=DB.DC\)\(\Rightarrow\frac{DH}{DB}=\frac{DC}{DF}\)
\(\Rightarrow\Delta\)CDH ~ \(\Delta\)FDB (c.g.c) => ^DHC = ^DBF. Mà ^DHC + ^DCH = 900
=> ^DBF + ^DCH = 900 => CH vuông góc BF.
Xét \(\Delta\)CFB: FD vuông góc BC; CH vuôn góc BF; H thuộc FD => H là trực tâm \(\Delta\)CFB
=> BH vuông góc CF (tại P). Ta có nửa đg trong (O) đg kính BC và có ^CPB = 900
=> P thuộc nửa đường tròn (O) => Tứ giác CMPB nội tiếp (O)
=> ^BMP = ^BCP (2 góc nt chắn cung BP) Hay ^HMP = ^DCP
Xét tứ giác CPHD: ^CPH = ^CDH = 900 => ^DCP + ^DHP = 1800
=> ^HMP + ^DHP = 1800 hay ^HMP + ^KHP = 1800 => Tứ giác MPHK nội tiếp đg tròn
=> ^KMH = ^KPH (2 góc nt chắn cung KH) hay ^KMN = ^KPB.
Lại có tứ giác EMKN nội tiếp đg tròn => ^KMN = ^KEN => ^KMN = ^KEB
=> ^KPB = ^KEB => Tứ giác BKPE nội tiếp đg tròn. Mà 3 điểm B;K;E cùng thuộc (I)
=> Điểm P cũng thuộc đg tròn (I) => IP=IB => I thuộc trung trực của BP
Mặt khác: OP=OB => O cũng thuộc trung trực của BP => OI là trung trực của BP
=> OI vuông góc BP. Mà CF vuông góc BP (cmt) => OI // CF (7)
I nằm trên trung trực của EK và F là trung điểm EK => IF vuông góc EK => IF vuông góc d
OC vuông góc d => OC // IF (8)
Từ (7) & (8) => Tứ giác COIF là hình bình hành => IF = OC = R (bk của (O))
=> Độ dài của IF không đổi. Mà IF là khoảng cách từ I đến d (Do IF vuông góc d)
=> I nằm trên đường thẳng d' // d và cách d một khoảng bằng bán kính của nửa đường tròn (O)
Vậy điểm I luôn nằm trên d' cố định song song với d và cách d 1 khoảng = bk nửa đg tròn (O) khi M thay đổi.
A B C M N O S D H E F K P Q I J
a) Ta thấy \(\widehat{AMN}=\widehat{ABH}+\frac{1}{2}\widehat{BHQ}=\widehat{ACH}+\frac{1}{2}\widehat{CHP}=\widehat{ANM}\). Suy ra \(\Delta AMN\) cân tại A.
b) Dễ thấy tứ giác BEFC và BQPC nội tiếp, suy ra \(\widehat{HEF}=\widehat{HCB}=\widehat{HPQ}\), suy ra EF || PQ
Hiển nhiên \(OA\perp PQ\). Do đó \(OA\perp EF.\)
c) Gọi MK cắt BH tại I, NK cắt CH tại J, HK cắt BC tại S.
Vì A,K là trung điểm hai cung MN của (AMN) nên AK là đường kính của (AMN)
Suy ra \(MK\perp AB,NK\perp AC\)hay MK || CH, NK || BH
Ta có \(\Delta BHQ~\Delta CHP\), theo định lí đường phân giác và Thales thì:
\(\frac{IH}{IB}=\frac{MQ}{MB}=\frac{NP}{NC}=\frac{JH}{JC}\). Suy ra IJ || BC
Cũng từ MK || CH, NK || BH suy ra HIKJ là hình bình hành hay HK chia đôi IJ
Do vậy HK chia đôi BC theo bổ đề hình thang. Vậy HK đi qua S cố định.
A B C O P D E F K M N Q
Gọi O là tâm ngoại tiếp của \(\Delta\)ABC. Khi đó PK đi qua (O), thật vậy:
Gọi DP,EP,FP cắt đường tròn (K) lần thứ hai lần lượt tại M,N,Q.
Theo hệ thức lượng đường tròn: PA.PD = PB.PE = PC.PF => Tứ giác BCFE nội tiếp
Nên ta có: ^MNQ = ^MNE + ^ENQ = ^MDE + ^EFQ = ^ABP + ^CBP = ^ ABC.
Hoàn toàn tương tự: ^MQN = ^ACB. Từ đó suy ra \(\Delta\)ABC ~ \(\Delta\)MNQ (g.g)
Hai tam giác này có tâm ngoại tiếp tương ứng là O,K nên \(\Delta\)AOC ~ \(\Delta\)MKQ (g.g)
=> \(\frac{OC}{KQ}=\frac{AC}{MQ}\). Bên cạnh đó ^DMQ = ^DFQ = ^CAP nên AC // MQ.
Theo hệ quả ĐL Thales có: \(\frac{AC}{MQ}=\frac{PC}{PQ}\). Từ đây \(\frac{OC}{KQ}=\frac{PC}{PQ}\) (1)
Ta lại có ^OCP = ^ACP - ^OCA = ^MQP - ^KQM = ^KQP (2)
Từ (1) và (2) suy ra \(\Delta\)COP ~ \(\Delta\)QKP (c.g.c) => ^CPO = ^QPK
Mà ba điểm C,P,Q thẳng hàng nên ba điểm O,P,K cũng thẳng hàng. Do vậy PK đi qua O cố định (đpcm).