K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2019

Căn bạc 2 ạ

22 tháng 4 2017

a) Xét\(\Delta\) ADB và \(\Delta\)ACE có:

Góc A chung

Góc D = Góc E (=900)

\(\Rightarrow\)\(\Delta\)ADN \(\infty\) \(\Delta\)ACE ( g.g )

b) Xét \(\Delta\)HEB và \(\Delta\)HDC có:

Góc ABD = Góc ACE ( CM ý a)

Góc E = Góc D ( =900)

\(\Rightarrow\)\(\Delta\)HEB\(\infty\) \(\Delta\)HDC ( g.g )

\(\Rightarrow\) \(\dfrac{HE}{HD}=\dfrac{HB}{HC}\) \(\Rightarrow\) HE.HC = HB.HD

c) Xét AFC và IFC có:

Góc C chung

Góc F = Góc I ( = 900 )

\(\Rightarrow\Delta AFC\infty\Delta FIC\left(g.g\right)\)

\(\Rightarrow\dfrac{AF}{IF}=\dfrac{FC}{IC}\Rightarrow\dfrac{AF}{FC}=\dfrac{IF}{IC}\)

a) Xét ΔABD và ΔACE có

\(\widehat{ADB}=\widehat{AEC}\)(=900)

\(\widehat{BAD}\) chung

Do đó: ΔABD∼ΔACE(g-g)

b) Xét ΔEHB và ΔDHC có

\(\widehat{BEH}=\widehat{CDH}\)(=900)

\(\widehat{EHB}=\widehat{DHC}\)(hai góc đối đỉnh)

Do đó: ΔEHB∼ΔDHC(g-g)

\(\frac{HE}{HD}=\frac{HB}{HC}\)

hay \(HD\cdot HB=HE\cdot HC\)(đpcm)

c) Xét ΔAIF và ΔFIC có

\(\widehat{AIF}=\widehat{FIC}\left(=90^0\right)\)

\(\widehat{AFI}=\widehat{FCI}\)(cùng phụ với \(\widehat{CFI}\))

Do đó: ΔAIF∼ΔFIC(g-g)

\(\frac{IF}{IC}=\frac{FA}{CF}\)(đpcm)

23 tháng 6 2020

bạn có thể vẽ giùm mình hình của bài này không ?