K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có

góc C chung

Do đo: ΔCDA\(\sim\)ΔCEB

b: Xét ΔHBD vuông tại D và ΔHAE vuông tại E có

\(\widehat{BHD}=\widehat{AHE}\)

Do đó: ΔHBD\(\sim\)ΔHAE

Suy ra: HB/HA=HD/HE

hay \(HB\cdot HE=HD\cdot HA\)

c: Ta có: ΔCDA\(\sim\)ΔCEB

nên CD/CE=CA/CB

=>CD/CA=CE/CB

Xét ΔCDE và ΔCAB có 

CD/CE=CA/CB

góc C chung

Do đó: ΔCDE\(\sim\)ΔCAB

a: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có

góc C chung

Do đó: ΔCDA\(\sim\)ΔCEB

b: Xét ΔHEA vuông tại E và ΔHDB vuông tại D có 

\(\widehat{AHE}=\widehat{BHD}\)

Do đó: ΔHEA\(\sim\)ΔHDB

Suy ra: HE/HD=HA/HB

hay \(HE\cdot HB=HD\cdot HA\)

a: Xet ΔABC vuông tại B và ΔAHB vuông tại H có

góc A chung

=>ΔABC đồng dạng với ΔAHB

b: Xét ΔDEC vuông tại D và ΔHEB vuông tại H có

góc DEC=góc HEB

=>ΔDEC đồng dạng với ΔHEB

=>DE/HE=DC/HB=EC/EB

=>DC*EB=HB*EC

c: ED/EH=EC/EB

=>ED/EC=EH/EB

=>ΔEDH đồng dạng với ΔECB

e:

Xét ΔCFB có

BD,CH là đường cao

BD cắt CH tại E

=>E là trực tâm

=>FE vuông góc BC

=>FE//AB

Xét ΔHBA vuông tại H và ΔHFE vuông tại H có

HA=HE

góc HBA=góc HFE

=>ΔHBA=ΔHFE

=>HB=HF

Xét tứ giác BEFA có

BF cắt EA tại trung điểm của mỗi đường
BF vuông góc EA

=>BEFA là hình thoi

a: Xet ΔHEA vuông tại E và ΔHIB vuông tại I có

góc EHA=góc IHB

=>ΔHEA đồng dạng với ΔHIB

b: Xét ΔMIB vuông tại M và ΔICH vuông tại I có

góc MIB=góc ICH

=>ΔMIB đồng dạng với ΔICH

=>IB/CH=IM/IC

=>IB*IC=CH*IM