K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét (O) có 

\(\widehat{ABC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)

\(\widehat{AKC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)

Do đó: \(\widehat{ABC}=\widehat{AKC}\)(Hệ quả góc nội tiếp)

hay \(\widehat{ABD}=\widehat{AKC}\)

Xét (O) có

\(\widehat{ACK}\) là góc nội tiếp chắn \(\stackrel\frown{AK}\)

\(sđ\stackrel\frown{AK}=180^0\)(AK là đường kính)

Do đó: \(\widehat{ACK}=90^0\)(Hệ quả góc nội tiếp)

Xét ΔADB vuông tại D và ΔACK vuông tại C có 

\(\widehat{ABD}=\widehat{AKC}\)

Do đó: ΔADB\(\sim\)ΔACK(g-g)

27 tháng 4 2023

giúp em vs ạ https://hoc24.vn/hoi-dap/tim-kiem?id=7957785622206&q=Cho+tam+gi%C3%A1c+ABC+nh%E1%BB%8Dn+n%E1%BB%99i+ti%E1%BA%BFp+(O;R).+%C4%90%C6%B0%E1%BB%9Dng+cao+AD,+BE,+CF+c%E1%BA%AFt+nhau+t%E1%BA%A1i+H.+CMR+:+N%E1%BA%BFu+AD+BC=BE+AC=CF+AB+th%C3%AC+tam+gi%C3%A1c+ABC+%C4%91%E1%BB%81u.

22 tháng 11 2022

a: Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>BD//CH

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

=>CD//BH

Xét tứ giác BHCD có

BH//CD

BD//CH

Do đó: BHCD là hình bình hành

b: BHCD là hình bình hành

nên BC cắt HD tại trung điểm của mỗi đường

=>I là trung điểm của HD

Xét ΔDAH có DI/DH=DO/DA

nen Io//AH và IO=AH/2

=>AH=2OI

 

AH
Akai Haruma
Giáo viên
25 tháng 3 2021

Lời giải:

a) Tứ giác $AFHE$ có tổng 2 góc đối nhau  $\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0$ nên $AFHE$ là tứ giác nội tiếp.

b) $AK$ là đường kính thì $\widehat{ACK}=90^0$ (góc nt chắn nửa đường tròn)

Xét tam giác $ABD$ và $AKC$ có:

$\widehat{ADB}=\widehat{ACK}=90^0$

$\widehat{ABD}=\widehat{AKC}$ (góc nt cùng chắn cung $AC$)

$\Rightarrow \triangle ABD\sim \triangle AKC$ (g.g)

$\Rightarrow \frac{AB}{AD}=\frac{AK}{AC}$

$\Rightarrow AB.AC=AD.AK$ (đpcm)

AH
Akai Haruma
Giáo viên
25 tháng 3 2021

Hình vẽ:

undefined

a: Xét tứ giác BDHF có 

\(\widehat{BDH}+\widehat{BFH}=180^0\)

Do đó: BDHF là tứ giác nội tiếp

Xét tứ giác BCEF có

\(\widehat{BFC}=\widehat{BEC}=90^0\)

Do đó: BCEF là tứ giác nội tiếp

b: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{BAE}\) chung

Do đó: ΔAEB∼ΔAFC

Suy ra: AE/AF=AB/AC

hay \(AE\cdot AC=AB\cdot AF\)

21 tháng 3 2018

Từng bài 1 thôi bạn!

A B C J O N K H M

vẽ trên đt thông cảm!

Do đường tròn ngoại tiếp tam giác ABC có tâm là O

Ta có bổ đề: \(OM=AN=NH=\frac{1}{2}AH\)(tự chứng minh)

Vì \(\widehat{BAH}=\widehat{OAC}\)(cùng phụ với \(\widehat{ABC}\)

Mà AK là phân giác của \(\widehat{BAC}\)

=> AK là phân giác 

\(\widehat{HAO}\Rightarrow\widehat{NAK}=\widehat{KAO}\)

Theo bổ đề trên ta có tứ giác ANMO là hình bình hành

=> HK//AO

=> \(\widehat{AKN}=\widehat{KAO}=\widehat{NAK}\left(cmt\right)\)

Hay tam giác NAK cân tại N mà N là trung điểm AH

=> AN=NH=NK

=> \(\Delta AHK\)vuông tại K

a: Xét (O) có

ΔABM nội tiếp

AM là đường kính

Do đó: ΔABM vuông tại B

=>BM\(\perp\)AB

mà CH\(\perp\)AB

nên CH//BM

Xét (O) có

ΔACM nội tiếp

AM là đường kính

Do đó: ΔACM vuông tại C

=>AC\(\perp\)CM

mà BH\(\perp\)AC

nên BH//CM

Xét tứ giác BHCM có

BH//CM

BM//CH

Do đó: BHCM là hình bình hành

b:

Xét ΔABC có

BE,CF là các đường cao

BE cắt CF tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại D

Xét (O) có

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

\(\widehat{AMC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ABC}=\widehat{AMC}\)

Ta có: \(\widehat{ABC}+\widehat{BAN}=90^0\)(ΔADB vuông tại D)

\(\widehat{AMC}+\widehat{MAC}=90^0\)(ΔACM vuông tại C)

mà \(\widehat{ABC}=\widehat{AMC}\)

nên \(\widehat{BAN}=\widehat{MAC}\)

Xét (O) có

ΔANM nội tiếp

AM là đường kính

Do đó: ΔANM vuông tại N

=>AN\(\perp\)NM

mà AN\(\perp\)BC

nên BC//NM

Ta có: \(\widehat{CHD}=\widehat{ABC}\)(=90 độ-góc FCB)

\(\widehat{ABC}=\widehat{ANC}\)

Do đó: \(\widehat{CHD}=\widehat{ANC}\)

=>ΔCHN cân tại C

=>CH=CN

mà CH=BM

nên BM=CN

Xét tứ giác BCMN có BC//MN

nên BCMN là hình thang

Hình thang BCMN có BM=CN

nên BCMN là hình thang cân

a) Xét tứ giác BCEF có 

\(\widehat{BEC}=\widehat{CFB}\left(=90^0\right)\)

\(\widehat{BEC}\) và \(\widehat{CFB}\) là hai góc cùng nhìn cạnh BC

Do đó: BCEF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

a:Xét tứ giác AFDC có

góc AFC=góc ADC=90 độ

Do đó: AFDC là tứ giác nội tiếp

b: Gọi AG là đường kính của (O)

Xét (O) có

ΔACG nội tiếp

AG là đường kính

Do đo: ΔACG vuông tại C

Xét ΔACG vuông tại C và ΔADB vuông tại D có

góc AGC=góc ABD

Do đó: ΔACG đồng dạng với ΔADB

=>AC/AD=AG/AB

=>AB*AC=AG*AD

NA
Ngoc Anh Thai
Giáo viên
22 tháng 5 2021

a) \(\widehat{CBH}=\widehat{DAC}\) (cùng phụ với \(\widehat{ACB}\))

\(\widehat{KBC}=\widehat{KAC}\) (cùng chắn cung KC)

Suy ra \(\widehat{KBC}=\widehat{CBH}\).

Xét tam giác BHK có \(\widehat{BCK}=\widehat{BCH},BD\perp HK\) 

Vậy tam giác BHK cân tại B và BC là trung trực của HK.

b) Vì AM là đường kính nên \(\widehat{ACM}=90^o\).

\(\widehat{ABC}=\widehat{AMC}\) (cùng chắn cung AC)

Xét hai tam giác ABD và AMC có: 

\(\left\{{}\begin{matrix}\widehat{D}=\widehat{C}=90^o\\\widehat{ABD}=\widehat{AMC}\end{matrix}\right.\) Vậy tam giác ABD đồng dạng với tam giác AMC (g.g).

Ta có từ giác BFEC nội tiếp ( vì có góc BFC = BEC = 90 độ).

Suy ra góc ABC = AEF => góc AEF = góc AMC.

Mà \(\widehat{AMC}+\widehat{CAM}=90^o\Rightarrow\widehat{AEF}+\widehat{CAM}=90^o\\ \Rightarrow AO\perp EF.\)

d) Xét hai tam giác AEQ và AMC đồng dạng ta sẽ có được AQ.AM = AE.AC.