Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác ADME có
AD//ME
AE//DM
Do đó: ADME là hình bình hành
Suy ra: Hai đường chéo AM và DE cắt nhau tại trung điểm của mỗi đường
hay D và E đối xứng nhau qua I
Xét tứ giác ADME có
ME//AD
MD//AE
Do đó: ADME là hình bình hành
Suy ra: Hai đường chéo AM và DE cắt nhau tại trung điểm của mỗi đường
hay D và E đối xứng nhau qua I
Xét tứ giác ADME có
AD//ME
AE//DM
Do đó: ADME là hình bình hành
Suy ra: Hai đường chéo AM và DE cắt nhau tại trung điểm của mỗi đường
hay D và E đối xứng nhau qua I
a: Xét ΔABC có
D là trung điểm của BC
E là trung điểm của AB
Do đó: DE là đường trung bình
=>DE//FA và DE=FA
hay AEDF là hình bình hành
a: XétΔABC có AT là phân giác
nên \(\dfrac{BT}{AB}=\dfrac{CT}{AC}\)
=>\(\dfrac{CT}{7,5}=\dfrac{3.5}{4.5}=\dfrac{7}{9}\)
=>\(CT=7.5\cdot\dfrac{7}{9}=\dfrac{35}{6}\left(cm\right)\)
b: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
nên ABDC là hình bình hành
c: Xét ΔNHC và ΔNKA có
\(\widehat{NCH}=\widehat{NAK}\)(hai góc so le trong, AK//CH)
NC=NA
\(\widehat{HNC}=\widehat{KNA}\)(hai góc đối đỉnh)
Do đó: ΔNHC=ΔNKA
=>NH=NK
=>N là trung điểm của HK
Xét tứ giác AHCK có
N là trung điểm chung của AC và HK
=>AHCK là hình bình hành
Hình bình hành AHCK có \(\widehat{AHC}=90^0\)
nên AHCK là hình chữ nhật
a: Ta có: M và N đối xứng nhau qua AB
nên AB là đường trung trực của MN
Suy ra: AM=AN; BM=BN
Xét ΔABN và ΔABM có
AB chung
BN=BM
AN=AM
Do đó: ΔABN=ΔABM