Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta đặt: \(S_{BEMF}=S_1;S_{ABC}=S\)
Kẻ \(AK\perp BC\) ; \(AK\) cắt \(EM\left\{H\right\}\)
Ta có: \(S_1=EM.HK\)
\(\Leftrightarrow S=\dfrac{1}{2}BC.AK\)
\(\Leftrightarrow\dfrac{S_1}{S}=2\dfrac{EM}{BC}.\dfrac{KH}{AK}\)
Đặt \(MA=x;MC=y\) . Theo định lý Thales ta có:
\(\dfrac{EM}{BC}=\dfrac{x}{x+y};\dfrac{HK}{AK}=\dfrac{x}{x+y}\)
\(\Leftrightarrow\dfrac{S_1}{S}=\dfrac{2xy}{\left(x+y\right)^2}\)
Áp dụng bất đẳng thức Cosi dạng \(\dfrac{ab}{\left(a+b\right)^2}\le\dfrac{1}{4}\) ta được:
\(\dfrac{S_1}{S}=\dfrac{2xy}{\left(x+y\right)^2}\le\dfrac{1}{2}\) hay \(S_1\le\dfrac{1}{2}S\)
\(\Leftrightarrow MaxS_1=\dfrac{1}{2}S\)
\(\Leftrightarrow\) \(M\) là trung điểm của \(AC\)
a: Xét (O) có
MB,MC là tiếp tuyến
=>MB=MC
mà OB=OC
nên OM là trung trực của BC
Xét ΔMEB và ΔMBF có
góc MBE=góc MFB
góc EMB chung
=>ΔMEB đồng dạng với ΔMBF
=>MB^2=ME*MF=MH*MO
a: Xét ΔMBA và ΔMAC có
góc MAB=góc MCA
góc M chung
=>ΔMBA đồng dạng với ΔMAC
=>MB/MA=MA/MC
=>MA^2=MB*MC
=>MC/MB=AB^2/AC^2
b: EF//AM
AM vuông góc OA
=>EF vuông góc OA
=>góc AEF+góc OAE=90 độ
=>góc AEF+(180 độ-góc AOB)/2=90 độ
=>góc AEF+90 độ-góc ACB=90 độ
=>gócAEF=góc ACB
=>góc BEF+góc BCF=180 độ
=>BEFC nội tiếp
=>góc BEC=góc BFC=90 độ
Xét ΔABC có
BF,CE là đường cao
BF căt CE tại H
=>H là trực tâm
=>AH vuông góc CB tại D
a: Xét ΔMBA và ΔMAC có
góc MAB=góc MCA
góc M chung
=>ΔMBA đồng dạng với ΔMAC
=>MB/MA=MA/MC
=>MA^2=MB*MC
=>MC/MB=AB^2/AC^2
b: EF//AM
AM vuông góc OA
=>EF vuông góc OA
=>góc AEF+góc OAE=90 độ
=>góc AEF+(180 độ-góc AOB)/2=90 độ
=>góc AEF+90 độ-góc ACB=90 độ
=>gócAEF=góc ACB
=>góc BEF+góc BCF=180 độ
=>BEFC nội tiếp
=>góc BEC=góc BFC=90 độ
Xét ΔABC có
BF,CE là đường cao
BF căt CE tại H
=>H là trực tâm
=>AH vuông góc CB tại D
a, Chứng minh: A B E ^ = A D E ^
b, Chứng minh được:
A
C
B
^
=
B
N
M
^
=> C, D, E nhìn AB dưới góc bằng nhau nên A, B, C, D, E cùng thuộc một đường tròn
=> BC là đường kính => B E C ^ = 90 0