K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 6 (các câu khác nhau thì không liên quan đến nhau)a) Cho tam giác ABC, kẻ BH  AC ( H  AC); CK  AB ( K  AB). Biết BH = CK.Chứng minh tam giác ABC cân.b) Cho Tam giác ABC, gọi M, N lần lượt là trung điểm các cạnh AB, AC. Biết CM =BN. Chứng tỏ tam giác ABC cân.c) Cho tam giác ABC cân tại A, Tia phân giác của góc B và góc C cắt AC và AB lầnlượt tại D và E. Chứng minh BD = CE.Bài 7: Cho tam giác ABC cân tại A. Trên tia đối của tia BC...
Đọc tiếp

Bài 6 (các câu khác nhau thì không liên quan đến nhau)
a) Cho tam giác ABC, kẻ BH  AC ( H  AC); CK  AB ( K  AB). Biết BH = CK.
Chứng minh tam giác ABC cân.
b) Cho Tam giác ABC, gọi M, N lần lượt là trung điểm các cạnh AB, AC. Biết CM =
BN. Chứng tỏ tam giác ABC cân.
c) Cho tam giác ABC cân tại A, Tia phân giác của góc B và góc C cắt AC và AB lần
lượt tại D và E. Chứng minh BD = CE.
Bài 7: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia
CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, CK vuông góc với AE
tại K. Hai đường thẳng HB và KC cắt nhau tại I. Chứng minh rằng:
a) Tam giác ADE cân.
b) Tam giác BIC cân.
c) IA là tia phân giác của góc BIC.
Bài 8: Cho tam giác ABC vuông tại A, có AB = 5cm, BC = 13cm. Kẻ AH vuông góc với
BC tại H. Tính độ dài các đoạn thẳng: AC, AH, BH, CH.

1

Bài 7:

a: Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

Suy ra: AD=AE

hay ΔADE cân tại A

b: Xét ΔHDB vuông tại H và ΔKEC vuông tại K có

DB=EC

\(\widehat{HDB}=\widehat{KEC}\)

Do đó: ΔHDB=ΔKEC

Suy ra: \(\widehat{HBD}=\widehat{KCE}\)

mà \(\widehat{HBD}=\widehat{IBC}\)

và \(\widehat{KCE}=\widehat{ICB}\)

nên \(\widehat{IBC}=\widehat{ICB}\)

hay ΔIBC cân tại I

c: Xét ΔABI và ΔACI có

AB=AC

BI=CI

AI chung

Do đó: ΔABI=ΔACI

Suy ra: \(\widehat{BIA}=\widehat{CIA}\)

hay IA là tia phân giác của góc BIC

17 tháng 7 2020

A B C D E G M

A)VÌ AD LÀ TRUNG TUYẾN CỦA \(\Delta ABC\)

MÀ G LÀ TRỌNG TÂM CỦA \(\Delta ABC\)

\(\Rightarrow AG=2GD\)

MÀ \(AG=GM\)( G LÀ TRUNG ĐIỂM CỦA AM )

\(\Rightarrow GM=2GD\)

NÊN D LÀ TRUNG ĐIỂM CỦA  GM

\(\Rightarrow GD=DM\left(ĐPCM\right)\)

XÉT \(\Delta BDM\)\(\Delta CDG\)

\(BD=CD\left(GT\right)\)

\(\widehat{BDM}=\widehat{CDG}\)( ĐỐI ĐỈNH)

\(GD=DM\left(CMT\right)\)

=>\(\Delta BDM\)=\(\Delta CDG\)( C-G-C)

B)

VÌ CE LÀ TRUNG TUYẾN CỦA \(\Delta ABC\)

MÀ G LÀ TRỌNG TÂM CỦA \(\Delta ABC\)

\(\Rightarrow CG=\frac{2}{3}CE\)

THAY\(CG=\frac{2}{3}.6=4\left(CM\right)\)

MÀ \(\Delta BDM\)=\(\Delta CDG\)( CMT)

=>\(BM=CG=4\left(CM\right)\)

C) 

TA CÓ

 \(AB< DB+DA\)

\(AC< DC+DA\)

CỘnG VẾ THEO VẾ

\(\Rightarrow AB+AC< 2AD+DB+DC\)

GIẢI TIẾP LÀ RA

cái chỗ giải tiếp là ra bạn giải tiếp cho mk ik

mk ko làm đc

1 tháng 3 2021

a) Chứng minh CM=BN :AM = CN (gt)AC = BC ( cạnh tam giác đều)CAM^ = BCN^ = 60*=> Δ ACM = Δ CBN (c.g.c)=> CM = BN

b) Chứng minh góc BOC không đổi khi M và N di động trên hai cạnh AB và AC thỏa mãn AM=CNΔ ACM = Δ CBN => ACM^ = CBN^ => ABN^ = BCM^=> CBN^ + BCM^ = CBN^ + ABN^ = ABC^ = 60*=> BOC^ = 180* - (CBN^ + BCM^) = 180* - 60* = 120* không đổi

1 tháng 3 2021

Bớt buff đi bạn ơi :)

17 tháng 2 2019

cần mik làm nữa ko