Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,tam giác ABC vuông cân tại A nên BAC=900,AB=AC
Dễ CM AMCN là hình bình hành (AM//CN,AC//MN) ,mà MAC(BAC)=900
=>AMCN là hình chữ nhật
b,Dễ CM H là trung điểm BC (M là tr.điểm AB,MH//AC)
CM BMCN là hình bình hành (MB//CN,MB=CN) ,H là tr.điểm BC nên H cũng là tr.điểm MN
CM \(\Delta HAM=\Delta HDN\) (g.c.g)=>AM=DN
Ta có CN+ND=AM+AM=2AM=AB => AB=CD ,mà AB//CD nên ABCD là hình bình hành
hình bình hành ABCD có AB=AC nên là hình thoi
hình thoi ABCD có BAC=900 nên là hình vuông (đpcm)
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
TÌM ĐIỂM KHÁC biệt ????
a) Xét \(\Delta AHC\)và \(\Delta DHB\)có:
\(\widehat{AHC}=\widehat{DHB}=90^0\)
\(\widehat{HAC}=\widehat{HDB}\)(đối đỉnh)
suy ra: \(\Delta AHC~\Delta DHB\) (g.g)
b) Xét \(\Delta ABC\)và \(\Delta BDA\)có:
\(\widehat{BAC}=\widehat{DBA}=90^0\)
\(\widehat{ABC}=\widehat{BDA}\) (cùng phụ vs góc DBH)
suy ra: \(\Delta ABC~\Delta BDA\)
\(\Rightarrow\)\(\frac{AB}{BD}=\frac{AC}{AB}\)
\(\Rightarrow\)\(AB^2=BD.AC\)
c) \(\Delta HAC\)vuông tại H có HN là đường trung tuyến
\(\Rightarrow\)\(HN=AN=NC\)
\(\Rightarrow\) \(\Delta NHC\)cân tại N \(\Rightarrow\) \(\widehat{NHC}=\widehat{NCH}\)
Tương tự: \(\widehat{MBH}=\widehat{MHB}\)
mà \(\widehat{MBH}=\widehat{HCN}\)(slt do BM // NC)
\(\Rightarrow\) \(\widehat{MHB}=\widehat{HCN}\)
mà \(\widehat{HCN}=\widehat{NHC}\) (cmt)
\(\Rightarrow\)\(\widehat{MHB}=\widehat{NHC}\)
\(\Rightarrow\)\(\widehat{MHB}+\widehat{BHA}+\widehat{AHN}\)
\(=\widehat{BHA}+\widehat{AHN}+\widehat{NHC}=180^0\)
Vậy M, N, H thẳng hàng
Áp dụng định lý Talet trong \(\Delta ABH\) , ta được :
\(\frac{MK}{BH}=\frac{AK}{AH}\left(1\right)\)
Áp dụng định lí Ta let trong \(\Delta ACH\), ta được :
\(\frac{NK}{CH}=\frac{AK}{AH}\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\): \(\Rightarrow\frac{MK}{BH}=\frac{NK}{CH}\)
Vì H là trung điểm của BC \(\Rightarrow BH=CH\)
\(\Rightarrow MK=NK\)
Mà \(K\in MN\)
\(\Rightarrow K\)là trung điểm của \(MN\left(đpcm\right)\)
Qua A kẻ đường thăng song song với BC cắt BE và CF lần lượt tại G và H
Xét tam giác EBC có:AG//BC
=>AEEC=AGBCAEEC=AGBC (hệ quả của định lí Ta-let)
Xét tam giác FBC có: AH//BC
=>AFBF=AHBCAFBF=AHBC (hệ quả của định lí Ta-let)
Xét tam giác IBM có: AG//BM
=>AGBM=AIIMAGBM=AIIM(hệ quả của định lí Ta-let)
Xét tam giác ICM có: AH//CM
=>AHCM=AIIMAHCM=AIIM(hệ quả của định lí Ta-let)
=>AGBM=AHMC(=IAIM)AGBM=AHMC(=IAIM)
=>AG=AH(vì BM=CM)
=>AGBC=AHBCAGBC=AHBC
=>AEEC=AFBF(=AGBC=AHBC)AEEC=AFBF(=AGBC=AHBC)
Xét tam giác ABC có: AEEC=AFBFAEEC=AFBF
=>EF//BC(theo định lí đảo Ta-let)
Minh : trả lời với một tốc độ bàn thờ :v