K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2018

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔMAB=ΔMDC

b: Xét tứ giác ABDC có 

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: AB//CD

24 tháng 12 2021

a: Xét ΔAMB và ΔCMD có

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)

MB=MD

Do đó: ΔAMB=ΔCMD

16 tháng 12 2021

b: Xét tứ giác ABDC có 

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

SUy ra: AB//CD

29 tháng 12 2023

a: Xét ΔMAC và ΔMDB có

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)

MC=MB

Do đó: ΔMAC=ΔMDB

b: Xét ΔMEB và ΔMFC có

ME=MF

\(\widehat{BME}=\widehat{CMF}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMEB=ΔMFC

=>\(\widehat{MEB}=\widehat{MFC}\)

=>\(\widehat{MFC}=90^0\)

=>CF\(\perp\)AD

c: Xét tứ giác BFCE có

M là trung điểm chung của BC và FE

=>BFCE là hình bình hành

=>BF//CE và BF=CE

Ta có: BF//CE

B\(\in\)FG

Do đó: BG//CE

Ta có: BF=CE

BF=BG

Do đó: BG=CE
Xét tứ giác BGEC có

BG//EC

BG=EC

Do đó: BGEC là hình bình hành

=>BE cắt GC tại trung điểm của mỗi đường

mà H là trung điểm của BE

nên H là trung điểm của GC

=>G,H,C thẳng hàng

a: Xét tứ giác ABDC có

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: AB=CD và AB//CD

b: Ta có: ABDC là hình bình hành

nên BD//AC

c: Ta có: AB//CD

nên \(\widehat{ABC}=\widehat{DCB}\)

22 tháng 1 2022

cop trắng trợn thế

14 tháng 12 2023

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMDC
b: Xét ΔMAC và ΔMDB có

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)

MC=MB

Do đó: ΔMAC=ΔMDB

=>\(\widehat{MAC}=\widehat{MDB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//BD

c: ΔMAB=ΔMDC

=>\(\widehat{MBA}=\widehat{MCD}\)

Xét ΔABH vuông tại H và ΔDCK vuông tại K có

AB=DC

\(\widehat{ABH}=\widehat{DCK}\)

Do đó: ΔABH=ΔDCK

=>BH=CK

BH+HK=BK

CK+HK=CH

mà BH=CK

nen BK=CH

d: Xét tứ giác ABCE có

I là trung điểm chung của AC và BE

=>ABCE là hình bình hành

=>AB//CE và AB=CE

Ta có: AB//CE

AB//CD

CD,CE có điểm chung là C

Do đó: C,E,D thẳng hàng

Ta có: AB=EC

AB=CD

Do đó: EC=CD

mà C,E,D thẳng hàng

nên C là trung điểm của DE