Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M E D
1. Vì ME // AC nên góc BME = góc BCA ;
DM // AB => góc DMC = góc ABC ; BM = MC
=> Tam giác EBM = tam giác DMC (g.c.g)
2. Vì tam giác EBM = tam giác DMC nên MD = BE
Mà DAEM là hình bình hành vì có các cạnh đối song song với nhau
=> DM = AE => BE = AE => E là trung điểm của AB
Tương tự ta cũng có D là trung điểm của AC
Ta có :
Tam giác EBM = tam giác DMC ( Định nghĩa tam giac )
Vì tổng tam giac = 180o
=> Tam giac EBM = tam giac DMC
Ta co vì BA // MD và EM // AC
Nếu như E là trung điểm AB va D là trung điểm AC
thì ta tao dược hình thoi mỗi cạnh bằng nhau
=>E là trung điểm AB và D là trung điểm AC
Khong biết đúng hay khong nhung bà coi lại dùm tui.
Nhưng sau khi giải bìa xong tui mới thấy bà rảnh quá trời.
A B C M D I K
a) Do AD // BC (gt) => góc DAC = góc ACB (so le trong)
AB // CD (gt) => góc BAC = góc ACD (so le trong)
Xét t/giác ABC và t/giác CDA
có góc ACB = góc DAC (cmt)
AC : chung
góc BAC = góc ACD (cmt)
=> t/giác ABC = t/giác CDA (g.c.g)
b) Ta có : t/giác ABC = t/giác CDA (cmt)
=> AB = CD (hai cạnh tương ứng)
Do AB // CD (gt) => góc ABD = góc BDC (so le trong)
Xét t/giác AMB và t/giác CMD
có góc BAM = góc MCD (cmt)
AB = CD (cmt)
góc ABM = góc BDM (cmt)
=> t/giác AMB = t/giác CMD (g.c.g)
=> AM = MC (hai cạnh tương ứng)
=> M là trung điểm của AC
c) Xét t/giác AMI và t/giác CMK
có góc DAC = góc ACK (cmt)
AM = CM (cmt)
góc IMA = góc CMK (đối đỉnh)
=> t/giác AMI = t/giác CMK (g.c.g)
=> MI = MK (hai cạnh tương ứng)
=> M là trung điểm của IK
Kuroba Kaito, mình đã biết I, M, K có thẳng hàng đâu. mới chứng minh được MI=Mk nên chưa thể nói M là trung điểm của IK được
TL:
Xét \(\Delta AMN\) và \(\Delta ABC\) có:
MN//BC
AM=MB(gt)
\(\Rightarrow AN=NC\) (đường trung bình trong tam giác)
=>dpcm