K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2019

a, Gọi D là trung điểm của MN \(\Rightarrow\overrightarrow{MN}=2\overrightarrow{MD}\).

Ta có: \(\overrightarrow{NA}+3\overrightarrow{NC}=\overrightarrow{0}\Leftrightarrow\overrightarrow{AN}=3\overrightarrow{NC}\) \(\Leftrightarrow AN=3NC\)

\(\overrightarrow{MD}=\overrightarrow{AD}-\overrightarrow{AM}=\frac{1}{2}\left(\overrightarrow{AM}+\overrightarrow{AN}\right)-\overrightarrow{AM}=\frac{1}{2}\overrightarrow{AN}-\frac{1}{2}\overrightarrow{AM}\)

\(\overrightarrow{MD}=\frac{3}{8}AC-\frac{1}{4}\overrightarrow{AB}\Rightarrow\overrightarrow{MN}=\frac{3}{4}\overrightarrow{AC}-\frac{1}{2}\overrightarrow{AB}\)

5 tháng 8 2019

b, IM là đường trung bình của tam giác ABC

\(\Rightarrow\) \(\overrightarrow{IM}=\frac{1}{2}\overrightarrow{CA}=\frac{1}{2}\left(\overrightarrow{IA}-\overrightarrow{IC}\right)\)

28 tháng 12 2020

dễ mà ,mình bỏ chữ vecto nha

IA+IB+IC+ID=IM+MA+IM+MB+IN+NC+IN+ND

=2IM+2IN+MA+MB+NC+ND

=0

29 tháng 12 2020

ỏ. cảm ơn bro

 

5 tháng 10 2017
Cho lục giác đều ABCDEF,M N P lần lượt là trung điểm của AB CD EF,Chứng minh vt IM + vt IN + vt IP = 1/2(vt IA + vt IB + vt IC + vt ID + vt IE + vt IF),Tìm G để vt GA + vt GB + vt GC + vt GD + vt GE + vt GF = vt 0,Toán học Lớp 10,bài tập Toán học Lớp 10,giải bài tập Toán học Lớp 10,Toán học,Lớp 10 Mình chỉ đủ khả nagw gải câu a) thôi
a) Cm: vt IM + vt IN + vt IP=1/2(vt IA + vt IB + vt IC + vt ID + vt IE + vt IF) với mọi I
2vt IM+2vt IN +2vt IP =( vt IA+vt IB )+( vt IC +vt ID )+ (vt IE +vt IF)
<=>2(vt IM + vt IN + vt IP )= vt IA + vt IB + vt IC + vt ID + vt IE + vt IF
<=>vt IM + vt IN + vt IP = 1/2(vt IA + vt IB + vt IC + vt ID + vt IE + vt IF)
6 tháng 10 2018

1) 6MK+ 4AB+ CB=0

6MK+ 4AM+ 4MB+ CM+ MB=0

4AK+ CK+ MK+ 5MB=0

4GC+ GA+ MA+ GC+ 5 MG+ 5GB=0

4GC+ MA+ 5MG+ 4GB=0

4GC+ 4GA+4GB=0

=> Thỏa mãn yêu cầu đề bài

6 tháng 10 2018

2)

* áp dụng tính chất đường phân giác chia cạnh đối diện thành hai đoạn tỉ lệ với hai cạnh kề của hai đoạn ấy.

=> CD/AC=DB/AB

<=> 6CD= 8DB

=> 6 vectoCD= 8vectoDB

6CD+ 8BD=0

6CA+ 6AD+ 8 BA+ 8AD=0

14AD= 6AC+ 8AB

AD=3/7AC+ 4/7AB

* cũng áp dụng tính chất đường phân giác

EB/EC=AB/AC

8EB=6EC

=> 8 vecto EB= 6vecto EC

8EA+ 8AB= 6EA+ 6AC

2EA= 6AC- 8AB

EA= 3AC- 4AB

28 tháng 11 2021

a) II là điểm trên cạnh BCBC mà: 2CI=3BI⇒BICI=232CI=3BI⇒BICI=23

⇒BICI+BI=23+2⇒BIBC=25⇒BICI+BI=23+2⇒BIBC=25

⇒BI=25BC⇒BI=25BC tương tự IC=35BCIC=35BC

JJ là điểm trên BCBC kéo dài: 5JB=2JC⇒JBJC=255JB=2JC⇒JBJC=25

⇒JBJC−JB=25−2⇒JBBC=23⇒JBJC−JB=25−2⇒JBBC=23

⇒JB=23BC⇒JB=23BC và BC=35JCBC=35JC

→AB=→AI+→IBAB→=AI→+IB→

=→AI−25→BC=AI→−25BC→

=→AI−25.32→JB=AI→−25.32JB→

=→AI−35→JB=AI→−35JB→

=→AI−35(→JA+→AB)=AI→−35(JA→+AB→)

=→AI+35→AJ−35→AB=AI→+35AJ→−35AB→

⇒→AB+35→AB=→AI+35→AJ⇒AB→+35AB→=AI→+35AJ→

⇒→AB=58→AI+38→AJ⇒AB→=58AI→+38AJ→
 

→AC=→AI+→ICAC→=AI→+IC→

=→AI+35→BC=AI→+35BC→

=→AI+35.35→JC=AI→+35.35JC→

=→AI+925(→JA+→AC)=AI→+925(JA→+AC→)

⇒→AC−925→AC=→AI−925→AJ⇒AC→−925AC→=AI→−925AJ→

⇒→AC=2516→AI−916→AJ⇒AC→=2516AI→−916AJ→

 

⇒52→AB=2516→AI+1516→AJ⇒52AB→=2516AI→+1516AJ→

và →AC=2516→AI−916→AJAC→=2516AI→−916AJ→

Trừ vế với vế ta có:

52→AB−→AC=32→AJ52AB→−AC→=32AJ→

⇒→AJ=53→AB−23→AC