Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Theo đề ta có: $\overrightarrow{BM}=2\overrightarrow{MC}=-2\overrightarrow{CM}$
$\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}(1)$
$=\overrightarrow{AB}-2\overrightarrow{CM}$
$\overrightarrow{AM}=\overrightarrow{AC}+\overrightarrow{CM}$
$\Rightarrow 2\overrightarrow{AM}=2\overrightarrow{AC}+2\overrightarrow{CM}(2)$
Lấy $(1)+(2)\Rightarrow 3\overrightarrow{AM}=\overrightarrow{AB}+2\overrightarrow{AC}$
$\Rightarrow \overrightarrow{AM}=\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}$
a: \(\overrightarrow{CN}=\dfrac{1}{2}\overrightarrow{CA}+\dfrac{1}{2}\overrightarrow{CB}\)
\(=\dfrac{1}{2}\overrightarrow{CB}+\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{2}\overrightarrow{CB}\)
\(=\dfrac{1}{2}\overrightarrow{u}-\overrightarrow{v}\)
Bài 2:
vecto AM=vecto AB+vecto BM
=vecto AB+2/3vecto BC
=vecto AB+2/3*(vecto BA+vecto AC)
=1/3*vecto AB+2/3*vecto AC
a: \(\overrightarrow{AI}=\dfrac{1}{2}\left(\overrightarrow{AM}+\overrightarrow{AN}\right)=\dfrac{1}{4}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AC}\)
\(\overrightarrow{AN}=\overrightarrow{AB}+\overrightarrow{BN}=-\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{AC}\)
\(=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\)
\(3BM=7CM=7\left(BC-BM\right)\Rightarrow10BM=7BC\)
\(\Rightarrow BM=\dfrac{7}{10}BC\Rightarrow\overrightarrow{BM}=\dfrac{7}{10}\overrightarrow{BC}\)
Ta có:
\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}=\overrightarrow{AB}+\dfrac{7}{10}\overrightarrow{BC}=\overrightarrow{AB}+\dfrac{7}{10}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)=\overrightarrow{AB}-\dfrac{7}{10}\overrightarrow{AB}+\dfrac{7}{10}\overrightarrow{AC}\)
\(\Rightarrow\overrightarrow{AM}=\dfrac{3}{10}\overrightarrow{AB}+\dfrac{7}{10}\overrightarrow{AC}\)
Lời giải:
Theo đề thì $\overrightarrow{3BM}=7\overrightarrow{MC}=-7\overrightarrow{CM}$
Lại có:
$\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}$
$\Rightarrow 3\overrightarrow{AM}=3\overrightarrow{AB}+3\overrightarrow{BM}=3\overrightarrow{AB}-7\overrightarrow{CM}(1)$
$\overrightarrow{AM}=\overrightarrow{AC}+\overrightarrow{CM}$
$\Rightarrow 7\overrightarrow{AM}=7\overrightarrow{AC}+7\overrightarrow{CM}(2)$
Từ $(1);(2)\Rightarrow 10\overrightarrow{AM}=3\overrightarrow{AB}+7\overrightarrow{AC}$
$\Rightarrow \overrightarrow{AM}=\frac{3}{10}\overrightarrow{AB}+\frac{7}{10}\overrightarrow{AC}$
\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\)
Có \(\overrightarrow{MB}=2\overrightarrow{MC}\Leftrightarrow\overrightarrow{MA}+\overrightarrow{AB}=2\overrightarrow{MA}+2\overrightarrow{AC}\)
\(\Leftrightarrow\overrightarrow{AM}=2\overrightarrow{AC}+\overrightarrow{BA}\)