Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M K I E D H
MK nêu cách giải thôi nha! Lười quá!!!
a, CM tứ giác MEAD là hình bình hành.( bạn tự cm)
Vì tứ giác MEAD là hình bình hành nên 2 đường chéo DE và AM cắt nhau tại trung điểm mỗi đường.
Mà điểm \(I\) là trung điểm của AM Suy ra \(I\) cũng là TĐ của DE
\(\Rightarrow I\in DE\) Suy ra \(I,D,E\) thẳng hàng
b, Kẻ \(IK\bot BC\) và \(AH\bot BC\) \((K,H \in BC)\)
Ta có
Vì \(IA=IM\) và \(IK//AH\)
\(\Rightarrow MK=KH\) \(\Rightarrow \) \(IK\) là đường trung bình của \(\Delta AMH\)
\(\Rightarrow IK=\dfrac{AH}{2}\) (1)
Lại có: Áp dụng định lí Py-ta-go cho \(\Delta AHC\)
\(\Rightarrow AH^2=AC^2-HC^2\)
\(=AC^2-{\left(\dfrac{BC}{2}\right)}^2\) \(=AC^2-{\left(\dfrac{AC}{2}\right)}^2\) ( Do \(\Delta ABC\) đều)
\(=AC^2-\dfrac{AC^2}{4}=\dfrac{3AC^2}{4}\)
\(\Rightarrow AH=\dfrac{\sqrt3 AC}{4}\) (2)
Từ (1)(2) suy ra \(IK=\dfrac{\sqrt3}{8}AC\)
Vì AC không đổi nên \(IK\) ko đổi.
Khoảng cách từ \(I\) đến BC ko đổi suy ra khi M di chuyển trên BC thì \(I\) di chuyển trên đường thẳng song song với BC
và cách BC một khoảng =\(\dfrac{\sqrt3}{8}AC=\dfrac{\sqrt3}{8}BC\)
Câu 2:
a: Xét ΔAME có
I là trung điểm của AM
ID//ME
Do đó: Dlà trung điểm của AE
=>AD=DE(1)
Xét ΔBDC có
M làz trung điểm của BC
ME//BD
Do đó: E là trung điểm của CD
=>DE=EC(2)
Từ (1) và (2) suy ra AD=DE=EC
b: Xét ΔAME có ID//ME
nên ID/ME=AD/AE
=>ID/ME=1/2
=>hay ME=2ID
Xét ΔBDC có ME//BD
nên ME/BD=CE/CD
=>ME/BD=1/2
=>ME=1/2BD
=>2ID=1/2BD
hay DI=1/4BD
A B C D M O N E
Xét \(\Delta OEB\)và \(\Delta OMC\)có :
\(OB=OC\left(gt\right)\)
\(\widehat{EBO}=\widehat{MCO}\)
\(EB=MC\left(gt\right)\)
\(\Rightarrow\Delta OEB=\Delta OMC\left(c.g.c\right)\)
\(\Rightarrow OE=OM\)( hai cạnh tương ứng ) \(\left(1\right)\)
Cũng có : \(\widehat{EOB}=\widehat{MOC}\)( hai góc tương ứng )
\(\Rightarrow\widehat{EOB}+\widehat{BOM}=\widehat{BOM}+\widehat{MOC}\)
\(\Rightarrow\widehat{EOM}=\widehat{BOC}=90^o\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow\Delta OEM\)vuông cân ( đpcm )
\(b,\)Ta có : \(AB//CN\Rightarrow\Delta ABM~\Delta NCM\)
\(\Rightarrow\frac{CM}{BM}=\frac{MN}{AM}\Rightarrow\frac{CM}{BM+MN}=\frac{MN}{AM+MN}\)
\(\Rightarrow\frac{CM}{BC}=\frac{MN}{AN}\Rightarrow\frac{BE}{AB}=\frac{MN}{AN}\)
\(\Rightarrow ME//BN\)
Cho chị nợ câu c :) lâu không học toán 8 quên sạch ròi :((
Gọi K là giao điểm của OM và BN
Do \(ME//BN\)(CMb)
=> Góc BKM= góc EMO=45 độ
Xét tam giác OBM và tam giác OKB có
\(BKM=OBM=45^0\)
Góc O chung
=> tam giác OBM đồng dạng tam giác OKB
=> \(OB^2=OM.OK\)
MÀ \(OB=OC\)
=> \(OC^2=OM.OK\)
=> tam giác OMC đồng dạng tam giác OCK
=> \(MKC=OCM=45^o\)
=> BKC=90 độ
=> \(K\equiv H\)
=> O,M,H thẳng hàng
Vậy O,M,H thẳng hàng
a) Xét ΔABD có
M là trung điểm của AB(gt)
C là trung điểm của BD(B và D đối xứng nhau qua C)
Do đó: MC là đường trung bình của ΔABD(định nghĩa đường trung bình của tam giác)
⇒MC//AD và \(MC=\frac{AD}{2}\)(định lí 2 về đường trung bình của tam giác)
mà \(AN=ND=\frac{AD}{2}\)(N là trung điểm của AD)
nên MC=AN=ND
Xét tứ giác AMCN có MC//AN(MC//AD, N∈AD) và MC=AN(cmt)
nên AMCN là hình bình hành(dấu hiệu nhận biết hình bình hành)
Xét ΔABD có
M là trung điểm của AB(gt)
N là trung điểm của AD(gt)
Do đó: MN là đường trung bình của ΔABD(định nghĩa đường trung bình của tam giác)
⇒MN//BD và \(MN=\frac{BD}{2}\)(định lí 2 về đường trung bình của tam giác)
mà \(BC=CD=\frac{BD}{2}\)(B và D đối xứng nhau qua C)
nên BC=MN=CD
mà AC=BC(ΔABC đều)
nên AC=MN
Hình bình hành AMCN có AC=MN(cmt)
nên AMCN là hình chữ nhật(dấu hiệu nhận biết hình chữ nhật)
b)
*Chứng minh E,C,N thẳng hàng
Ta có: AH là đường cao của ứng với cạnh BC của ΔABC đều(gt)
⇒AH cũng là đường trung tuyến ứng với cạnh BC
hay H là trung điểm của BC
⇒BH=HC
Xét ΔAHC vuông tại H và ΔBHE vuông tại H có
HC=BH(cmt)
\(\widehat{ACH}=\widehat{EBH}\)(So le trong, BE//AC)
Do đó: ΔAHC=ΔBHE(cạnh góc vuông-góc nhọn kề)
⇒AH=EH(hai cạnh tương ứng)
mà H nằm giữa A và E
nên H là trung điểm của AE
Xét tứ giác ACEB có
H là trung điểm của đường chéo BC(cmt)
H là trung điểm của đường chéo AE(cmt)
Do đó: ACEB là hình bình hành(dấu hiệu nhận biết hình bình hành)
⇒EC//AB(hai cạnh đối của hình bình hành ACEB)
mà CN//AB(CN//AM, B∈AM)
và EC và CN có điểm chung là C
nên E,C,N thẳng hàng(đpcm)
Mình làm nốt 2 ý còn lại.
b) Dễ dàng chứng minh tam giác ADE cân tại A.
Mặt khác ta có ^BAH = ^ADC = ^CAD
=> ^HAD = ^BAC = 60^0
Tam giác ADE cân tại A có ^BAC = 60^0 => tam giác ADE đều ( đpcm )
c) Vì BE // AC và AB // CE nên tứ giác ABEC là hình bình hành
Mà 2 đường chéo AE và BC vuông góc nên ABEC là hình thoi
\(\Rightarrow S_{ABEC}=\frac{1}{2}\cdot AE\cdot BC\)
Ta có: \(S_{ABD}=\frac{1}{2}\cdot AH\cdot BD=\frac{1}{2}\cdot AH\cdot2BC=AH\cdot BC=\frac{1}{2}\cdot AE\cdot BC=S_{ABEC}\)