K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Đầu tiên chứng minh \(NE=\frac{1}{6}AN\)
Qua E kẻ đường thẳng song song BF cắt AC tại K
Theo định lý Ta - lét :
\(\frac{FK}{FC}=\frac{BF}{BC}=\frac{1}{3}\rightarrow\frac{FK}{AF}=\frac{1}{6}=\frac{NE}{AN}\)
Từ \(E,N,C\) kẻ đường cao tới AB lần lượt \(H,G,I\)
Theo định lý Ta - lét :
\(\frac{EH}{CI}=\frac{BE}{BC}=\frac{1}{3},\frac{NG}{EH}=\frac{AN}{AE}=\frac{6}{7}\)
\(\rightarrow\frac{NG}{CI}=\frac{2}{7}\rightarrow\frac{NG.AB}{CI.AB}=\frac{2}{7}\)
\(\rightarrow\frac{S_{ABN}}{S_{ABC}}=\frac{2}{7}\)
Tương tự : \(\frac{S_{BPC}}{S_{ABC}}=\frac{2}{7},\frac{S_{AMC}}{S_{ABC}}=\frac{2}{7}\)
\(\rightarrow S_{MNP}=S_{ABC}-S_{AMC}-S_{ABN}-S_{BCP}=\frac{1}{7}S_{ABC}\)
Vậy \(S_{MNP}=\frac{1}{7}S_{ABC}\)
cảm ơn ạ