K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2022

A B C E F I M

a/ Xét tg vuông ABC có 

BM=CM (gt) => AM=BM=CM=BC/2 (trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)

=> tg ABM cân tại M => \(\widehat{BAM}=\widehat{ABM}\) (góc ở đáy tg cân)

b/ Xét tg vuông AEF và tg vuông AFM có

\(\widehat{AEF}=\widehat{FAM}\) (cùng phụ với \(\widehat{AFE}\) ) (1)

Mà AM=CM (cmt) => tg MAC cân tại M => \(\widehat{FAM}=\widehat{ACB}\) (góc ở đáy th cân) (2)

Từ (1) và (2) \(\Rightarrow\widehat{ACB}=\widehat{AEF}\)

Xét tg MBE và tg MFC có

\(\widehat{AEF}=\widehat{ACB}\) (cmt)

\(\widehat{BME}=\widehat{CMF}\) (góc đối đỉnh)

=> tg MBE đồng dạng với tg MFC (g.g.g)

c/ Xét tg vuông ABC và tg vuông AFE có

\(\widehat{AEF}=\widehat{ACB}\) (cmt)

=> tg ABC đông dạng với tg AFE

\(\Rightarrow\dfrac{AB}{AF}=\dfrac{AC}{AE}\Rightarrow AB.AE=AC.AF\)

d/

 

a: ΔABC vuông tại A

mà AM là trung tuyến

nên AM=MB=MC

=>góc MBA=góc MAB

b: góc AEF=90 độ-góc EAM=90 độ-góc B

=>gócAEF=góc ACB

c: Xét ΔAFE vuông tại A và ΔABC vuông tại A có

góc AEF=góc ACB

=>ΔAFE đồng dạng với ΔABC

=>AF/AB=AE/AC

=>AF*AC=AB*AE

10 tháng 9 2021

các bạn giúp mik với!!!!

a: Xét ΔANH vuông tại N và ΔAHC vuông tại H có

góc NAH chung

Do đó: ΔANH\(\sim\)ΔAHC

b: \(HC=\sqrt{15^2-12^2}=9\left(cm\right)\)

c: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

12 tháng 5 2022

refer

a: Xét ΔAEM vuông tại M và ΔAHM vuông tại M có

AM chung

ME=MH

Do đó: ΔAEM=ΔAHM

b: Xét ΔBHE có 

BM là đường cao

BM là đường trung tuyến

Do đó: ΔBHE cân tại B

Xét ΔAEB và ΔAHB có 

AE=AH

EB=HB

AB chung

Do đó: ΔAEB=ΔAHB

Suy ra: ˆAEB=ˆAHB=900AEB^=AHB^=900

hay AE⊥EB