K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAEF có

H là trung điểm của AE

M là trung điểm của AF

Do đó: HM là đường trung bình

=>HM//EF và HM=EF/2

hay EF⊥AE

Ta có: ΔAEF vuông tại E

mà EM là đường trung tuyến

nên EM=AF/2=MF=MA

b: Xét tứ giác ABFC có 

M là trung điểm của AF

M là trung điểm của BC

Do đó:ABFC là hình bình hành

Suy ra: CF=AB(1)

Xét ΔABE có

BH là đường cao

BH là đường trung tuyến

Do đó: ΔABE cân tại B

=>BA=BE(2)

Từ (1) và (2) suy ra BE=CF

c: Ta có: ABFC là hình bình hành

nên AC//BF

30 tháng 9 2018

cc tau

10 tháng 5 2019

a) Xét tam giác AMB và DMC có góc AMB= gCMD,AM=MD,BM=MC=> Tg AMB=TgDMC(cgc)

10 tháng 5 2019

b) Tam giác ABE có BH là đường cao ( BHvg với AE) và là đường trung tuyến( EH=HA)=> ABE là tg cân taij B

15 tháng 12 2016

a) Xét t/g AME và t/g DMB có:

AM=DM (gt)

AME=DMB ( đối đỉnh)

ME=MB (gt)

Do đó, t/g AME = t/g DMB (c.g.c) (đpcm)

b) t/g AME = t/g DMB (câu a)

=> AE=BD (2 cạnh tương ứng) (1)

AEM=DBM (2 góc tương ứng)

Mà AEM và DBM là 2 góc ở vị trí so le trong nên AE // BC (2)

(1) và (2) là đpcm

c) Xét t/g AKE và t/g CKD có:

AEK=CDK (so le trong)

AE=CD ( cùng = BD)

EAK=DCK (so le trong)

Do đó, t/g AKE = t/g CKD (g.c.g) (đpcm)

d) Dễ dàng c/m t/g AMF = t/g DMC (c.g.c)

=> AF = DC (2 cạnh tương ứng)

AFM=DCM (2 góc tương ứng)

Mà AFM và DCM là 2 góc ở vị trí so le trong nên AF //BC

Lại có: AE // BC (câu b) suy ra AF trùng với AE hay A,E,F thẳng hàng (3)

Mà AF=DC=BD=AE (4)

Từ (3) và (4) => A là trung điểm của EF (đpcm)

15 tháng 12 2016

C.ơn p nha

a: góc ABC=góc ACB=(180-50)/2=130/2=65 độ

b: ΔÂBC cân tại A

mà AM là trung tuyến

nen AM vuông góc với BC

c: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

nên ABDC là hình bình hành

=>AC//BD

a: góc ABC=góc ACB=(180-50)/2=130/2=65 độ

b: ΔÂBC cân tại A

mà AM là trung tuyến

nen AM vuông góc với BC

c: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

nên ABDC là hình bình hành

=>AC//BD

8 tháng 5 2018

có vẽ hình ko ???

8 tháng 5 2018

A B C D E H M 2 1