Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác CIA có NK//CI
=> \(\frac{AK}{AI}=\frac{AN}{AI}\)(Định lý Ta let)
=> AK . AI = AC . AN (1)
Xét tam giác ABK có BK//IM
=>\(\frac{AI}{AB}=\frac{AM}{AK}\)(ĐỊnh lý Ta let)
=>AI . AK = AB . AM (2)
Từ (1)(2) => AB . AM = AC . AN
=>\(\frac{AB}{AN}=\frac{AC}{AM}\)
=>MN//BC (Định lý Talet đảo)
Học tốt!
#[礼治郎]๖ۣۜƦëเ Ꮰเɾ๏ッ
Áp dụng định lí Thalès:
• Vì IM // BK nên \(\dfrac{{AI}}{{AB}} = \dfrac{{AM}}{{AK}}\)suy ra AB . AM = AI . AK (1)
• Vì KN // IC nên \(\dfrac{{AN}}{{AI}} = \dfrac{{AK}}{{AC}}\) suy ra AN . AC = AI . AK (2)
Từ (1) và (2) suy ra AB . AM = AN . AC = AI . AK
Do đó \(\dfrac{{AN}}{{AB}} = \dfrac{{AM}}{{AC}}\) (theo tính chất tỉ lệ thức).
Suy ra MN // BC (theo định lí Thalès đảo).
+) Xét △ABK có :IM//BK;I∈AB;M∈AK
Theo Đlí ta-lét ,ta có :
\(\frac{AI}{AB}=\frac{AM}{AK}\) (1)
⇒AI.AK=AM.AK
+)Xét ▲AIC có :NK//IC;N∈AI;K∈AC
Theo ĐLí ta-lét ,ta có :
\(\frac{AN}{AI}=\frac{AK}{AC}\) (2)
⇒AN.AC=AK.AI(4)
Từ (3) và (4) ,áp dụng Đlí Ta-lét đảo ,ta có :
=>-\(\frac{AN}{AB}=\frac{AM}{AC}\)
=>MN//BC(đpcm)
a: Xét tứ giác ANMP có
\(\widehat{ANM}=\widehat{APM}=\widehat{NAP}=90^0\)
=>ANMP là hình chữ nhật
c: Xét ΔABC có
M là trung điểm của BC
MN//AC
Do đó: N là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
MP//AB
Do đó: P là trung điểm của AC
Xét ΔABC có
N,P lần lượt là trung điểm của AB,AC
=>NP là đường trung bình của ΔABC
=>NP//BC và NP=BC/2
=>NP//MH
Ta có: ΔHAC vuông tại H
mà HP là đường trung tuyến
nên HP=AP
mà AP=MN(ANMP là hình chữ nhật)
nên HP=MN
Xét tứ giác MHNP có MH//NP
nên MHNP là hình thang
Hình thang MHNP có MN=HP
nên MHNP là hình thang cân
A B C I K M N