Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
t=>Có đường cao AH(gt) => Góc AHB = 90 độ
Xét tam giác AHB vuông tại H có
Góc BAH + góc ABh = 90 độ( do góc ABH = 90 độ
=> góc BAI + góc ABI = 45 độ
Có I nằm giữa B và F => Góc AIF là góc ngoài của tam giác BIA
=> góc AIF= góc ABI+ góc IAB= 45 độ (1)
Có góc BAH = 2 (góc C)
=> góc IAH= góc C
Ta lại có : góc FBC + góc IAH =45 độ
=> góc FBC + góc C =45 độ
=> góc AFI= 45 độ ( là góc ngoài của tam giác FBC) (2)
Từ (1) và (2) => tam giác AIF cân tại A(*)
Xét tam giác AIF có
góc AIF+ góc AFI + góc FAI=180 độ
=> góc IAF =90 độ(**)
Từ *) và (**) => tam giác AIF
vuông cân tại A
Ta có hình vẽ sau:
A B C M D N E
a) Xét ΔABM và ΔCDM có:
MB = MD (gt)
\(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)
AM = CM (gt)
=> ΔABM = ΔCDM (c.g.c)(đpcm)
b) Vì ΔABM = ΔCDM (ý a)
=> \(\widehat{BAM}=\widehat{DCM}\) (2 góc tương ứng)
mà 2 góc này lại ở vị trí so le trong nên
=> AB // CD (đpcm)
c) +)Vì ΔAB // CD (ý b)
=> \(\widehat{NBM}=\widehat{EDM}\) (so le trong)
Xét ΔMNB và ΔMED có:
\(\widehat{EMD}=\widehat{NMB}\) (đối đỉnh)
MB = MD (gt)
\(\widehat{NBM}=\widehat{EDM}\) (cm trên)
=> ΔMNB = ΔMED (g.c.g)
=> NB = ED(2 cạnh tương ứng) (1)
+) CM tương tự ta có:
ΔMEA = ΔMNC(g.c.g)
=> EA = NC (2 cạnh tương ứng) (2)
Từ (1) và (2)
=> EA = ED => E là trung điểm của AD (đpcm)
á, sao đã tl rồi thế này hả
Nguyễn Thị Thu An,
Trần Nghiên Hy
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
DO đó:ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AC//BD
a: \(\widehat{BAC}=180^0-80^0-40^0=60^0\)
\(\widehat{DAC}=\dfrac{60^0}{2}=30^0\)
\(\widehat{ADC}=180^0-30^0-40^0=110^0\)
b: Xét ΔBAD và ΔEAD có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔBAD=ΔEAD
A B C H 8,5 5 4
+ Áp dụng định lí Py - ta - go vào \(\Delta AHB\) vuông tại H
AB2 = AH2 + HB2
8,52 = 42 + HB2
HB2 = 72,25 - 16
HB2 = 56,25
HB = 7,5 ( cm )
+ Áp dụng định lí Py - ta - go vào \(\Delta AHC\) vuông tại H
AC2 = HC2 + AH2
52 = HC2 + 42
HC2 = 25 - 16
HC2 = 9
HC = 3 ( cm )
+ Ta có : BC = BH + HC
hay BC = 7,5 + 3 = 10,5
Chu vi \(\Delta ABC\) : AB + AC + BC = 8,5 + 5 + 10,5 = 24 ( cm )
\(\widehat{BAM}+\widehat{NAM}=90^0\)
\(\widehat{BMA}+\widehat{MAH}=90^0\)
mà \(\widehat{NAM}=\widehat{HAM}\)
nên \(\widehat{BAM}=\widehat{BMA}\)
hay ΔBMA cân tại B