K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Kẻ MN

Có: IM là tia p/g của góc AIB

=> AM:BM = AI:BI  (1)

IN là tia p/g của góc AIC

=> AN:NC = AI:IC (2)

Từ (1) và (2) => BI =CI

=> AM:MB = AN:NC

=> MN // BC ( Talet đảo )

mik cũng ko làm đc

20 tháng 4 2020

Cho tam giác ABC với I là trung điểm của BC và tia phân giác của góc AIB cắt AB tại M và tia phân giác của góc AIC cắt N.Gọi O là giao điểm của MN và AI. a)CMR: OM=ON; b)Tam giác ABC phải thỏa mãn điều kiện gì để MN=AI; c)Tam giác ABC phải thỏa mãn điều kiện gì để tứ giác AMIN là hình vuông

13 tháng 4 2021
Câu c là MA.MP = MB.MN nhé

a: Xét ΔIAB có ID là phân giác

nên DA/DB=AI/IB=AI/IC

Xét ΔIAC có IE là phân gíac

nên AE/EC=AI/IC

=>DA/DB=EA/EC

=>DE//BC

b: Xét ΔABI có DO//BI

nên DO/BI=AO/AI

Xét ΔACI co EO//IC

nên EO/IC=AO/AI

=>DO/BI=EO/IC

mà BI=IC

nên DO=EO

=>O là trung điểm của DE

Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giácBài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5. a) Tính độ dài AB (câu này tớ làm đc rồi)b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường...
Đọc tiếp

Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giác

Bài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5. 

a) Tính độ dài AB (câu này tớ làm đc rồi)

b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)

Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường phân giác góc C cắt BA tại N

a) Cm: MN//AC 

b) Tính MN theo a,b

Bài 4: Cho tam giác ABC cân ở A, phân giác trong BD, BC=10cm, AB=15cm

a) Tính AD, DC

b) Đường phân giác ngoài góc B của tam giác ABC cắt đường thẳng AC tại D'. Tính D'C

Bài 5: Cho tam giác ABC có AB=5cm, AC=6cm, BC=7cm. Gọi G là trọng tâm tam giác ABC, O là giao điểm của 2 đường phân giác BD, AE

a) Tính độ dài đoạn thẳng AD

b) Cm: OG//AC

HD: a) AD=2,5cm b) OG//DM => OG//AC

Bài 6: Cho tam giác ABC. Gọi I là trung điểm của cạnh BC. Đường phân giác của góc AIB cắt cạnh AB ở M. Đường phân giác của góc AIC cắt cạnh AC ở N

a) CMR: MN//BC

b) Gọi giao điểm của DE và AM là O. CM: OM=ON

c) Tam giác ABC phải thoả mãn điều kiện gì để có MN=AI

d) Tam giác ABC phải thoả mãn điều kiện gì để có MN vuông góc với AI

0
17 tháng 2 2020

A B C I M N

Bạn dưới làm câu a) rồi mình xin phép làm từ câu b) nhé :

b) Áp dụng định lý Talets ta có :

+) \(MK//BI\Rightarrow\frac{KM}{BI}=\frac{AK}{AI}\)

+) \(KN//IC\Rightarrow\frac{AK}{AI}=\frac{KN}{IC}\)

\(\Rightarrow\frac{KM}{BI}=\frac{KN}{IC}\) mà \(BI=CI\)

\(\Rightarrow KM=KN\)

Nên K là trung điểm của MN.

c) Ta thấy : \(MN//BC\)

Vì thế, để \(MN\perp AI\)

\(\Leftrightarrow AI\perp BC\)

\(\Leftrightarrow\Delta ABC\) cân tại A ( Do \(AI\) vừa là trung tuyến, vừa là đường cao )

\(\Leftrightarrow AB=AC\)

Vậy \(\Delta ABC\) có thêm điều kiện \(AB=AC\) thì \(MN\perp AI\)

17 tháng 2 2020

a) Kẻ đoạn thẳng MN

Ta có: IM là tia phân giác \(\widehat{AIB}\)

\(\Rightarrow\frac{AM}{BM}=\frac{AI}{BI}\left(1\right)\)

IN là tia phân giác \(\widehat{AIC}\)

\(\Rightarrow\frac{AN}{NC}=\frac{AI}{IC}\left(2\right)\)

Từ (1) (2) và BI = CI

\(\Rightarrow\frac{AM}{MB}=\frac{AN}{NC}\)

=> MN // BC (định lý Ta lét đảo)

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC a, Tứ giác BMNC là hình gì ? b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ? c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi . d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông 2, Cho tam giác ABC cân tai A...
Đọc tiếp

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC

a, Tứ giác BMNC là hình gì ?

b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ?

c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi .

d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông

2, Cho tam giác ABC cân tai A lấy điểm M trên cạnh AB . Từ M kẻ đường thẳng song song với AC cắt BC tại E

a, Chứng minh tam giác BME cân

b, Trên tia đối của tia CA lấy điểm N sao cho CN = BM . Tứ giác MCNE là hình gì ?

c, Gọi I là trung điểm của CE . Chứng minh M,N,I thẳng hàng

d, Từ M kẻ đường thẳng song song với BC cắt AC tại F . Từ N kẻ đường thẳng song song với BC cắt Me tại K . Chứng minh F,I,K thẳng hàng

 

1

Bài 1: 

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC

hay BMNC là hình thang

b: Xét ΔABK có MI//BK

nên MI/BK=AM/AB=1/2(1)

XétΔACK có NI//CK

nên NI/CK=AN/AC=1/2(2)

Từ (1)và (2) suy ra MI/BK=NI/CK

mà MI=NI

nên BK=CK

hay K là trug điểm của BC

Xét ΔABC có 

K là trung điểm của BC

M là trung điểm của AB

Do đó: KM là đường trung bình

=>KM//AN và KM=AN

hay AMKN là hình bình hành

10 tháng 8 2019

A B C I N M J P Q R K

Gọi AJ là đường trung tuyến của \(\Delta\)ABC. Đường thẳng qua N song song AB cắt BC tại P.

Đường thẳng qua C song song AB cắt đường thẳng qua M song song BC và AJ lần lượt tại Q,R.

Ta thấy \(\Delta\)MAN có đường cao AI đồng thời là đường phân giác nên \(\Delta\)MAN cân tại A

=> I cũng là trung điểm cạnh MN. Từ đó \(\Delta\)MBI = \(\Delta\)NPI (g.c.g) => NP = BM; ^INP = ^IMB

Mà NP // BM // CQ, BM = CQ nên NP // QC, NP = QC => Tứ giác NPQC là hình bình hành

Nếu ta gọi K là trung điểm PC thì N,K,Q thẳng hàng

Chú ý rằng \(\Delta\)NPC ~ \(\Delta\)ABC (g.g) với trung tuyến tương ứng NK,AJ => \(\Delta\)NPK ~ \(\Delta\)ABJ (c.g.c)

=> ^PNQ = ^PNK = ^BAJ. Kết hợp với ^INP = ^IMB (cmt) suy ra ^MNQ = ^INP + ^PNQ = ^BAJ + ^IMB (1)

Mặt khác: \(\Delta\)ABJ = \(\Delta\)RCJ (g.c.g) => AB = CR < AC => ^BAJ = ^CRJ > CAJ

Điều đó có nghĩa là ^BAJ > ^BAC/2 = ^BAI => ^BAJ + ^IMB > ^BAI + ^IMB = 900  (2)

Từ (1) và (2) suy ra ^MNQ > 900 => MQ là cạnh lớn nhất trong \(\Delta\)QMN => MN < MQ = BC

Vậy MN < BC.