\(=\) CF.
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2017

A B C D E F

Lời giải: Gọi ssooj dài AB = c , AC = b, AE = BF = x thì AF = (b -x) .Vì EF//BC nên ta có :   \(\frac{AE}{AB}=\frac{AF}{AC}\) Tức là \(\frac{x}{c}=\frac{b-x}{b}\)Theo tính chất của dãy tỷ số bằng nhau ta có :    \(\frac{x}{c}=\frac{b-x}{b}=\frac{x+\left(b-x\right)}{c+b}=\frac{b}{b+c}\) Tức là \(\frac{x}{c}=\frac{b}{b+c}\) Suy ra cách xác định điểm E như sau (Xem hình vẽ ở trên) : 

         - Kéo dài AC về phía C, lấy điểm D sao cho CD = AB = c

          -  Nối  BD. Kẻ qua C đường thẳng (d) song song với BD, giao điểm của đường thẳng (d) với cạnh AB chính là điểm E 

          - Kẻ qua E đường thẳng \(\left(\Delta\right)\)giao điểm của \(\left(\Delta\right)\)với cạnh AC chính là ddirrt, F.

CHÚC CÁC ANH CHỊ CHĂM CHỈ HỌC, HỌC GIỎI

31 tháng 1 2016

bạn chơi gunny ko

10 tháng 6 2017

A B C M F E 1 1 2

ΔABC vuông tại A (gt) => góc C = 45o

AM là trung tuyến nên AM _|_ BC và góc A1 = 45o, ΔAME và  ΔCMF có góc A1 = góc C (=45o)

AM = CM ( = 1/2BC) ; M1 = M2 (phụ với góc AME) 

Vậy ΔAME = ΔCMF (g-c-g), suy ra AE = CF (đpcm)

17 tháng 3 2018

vẽ thêm MN là tia đối của tia AM sau đó cm AN=EF

1 tháng 2 2016

E,F là trung điểm của AB,AC

cần giải thích ko

27 tháng 11 2016

a.Xét tam giác DAB và tam giác DAE , ta có :

AB = AE

A1 = A2

AD là cạnh chung

ð Tam giác DAB = tam giác DAE

ð BD = DE ( 2 cạnh tương ứng )

b.V ì tam giác DAB = tam giác DAE

=> B2 = E2 ( 2 góc tương ứng )

Ta có :

B1 + B2 = 180o ( 2 góc tương ứng )

E1 + E2 = 180o ( 2 góc tương ứng )

=> B1 = E1

Ta có :

À – AB = BF

AC-AE= EC

Biết : AE = AC ; AB = AE ( gt )

=>BF = EC

Xét tam giác BDF và tam giác EDC có :

BE = FC ( cmt )

B1 = E1( cmt )

BD = ED ( cm câu a )

=> tam giác BDF = tam giác EDC

27 tháng 11 2016

c.Vì tam giác BDF = tam giác EDC ( cmt )

=>\(\widehat{D_1}\) = \(\widehat{D_2}\) ( 2 góc tương ứng )

\(\widehat{D1}+\widehat{FDC=180^o}\) ( 2 góc kề bù )

=>\(\widehat{D_2+}\widehat{FDC}=180^o\)

=> \(\widehat{EDF=180^o}\)

=> E,D,F thẳng hàng