Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E F
Lời giải: Gọi ssooj dài AB = c , AC = b, AE = BF = x thì AF = (b -x) .Vì EF//BC nên ta có : \(\frac{AE}{AB}=\frac{AF}{AC}\) Tức là \(\frac{x}{c}=\frac{b-x}{b}\)Theo tính chất của dãy tỷ số bằng nhau ta có : \(\frac{x}{c}=\frac{b-x}{b}=\frac{x+\left(b-x\right)}{c+b}=\frac{b}{b+c}\) Tức là \(\frac{x}{c}=\frac{b}{b+c}\) Suy ra cách xác định điểm E như sau (Xem hình vẽ ở trên) :
- Kéo dài AC về phía C, lấy điểm D sao cho CD = AB = c
- Nối BD. Kẻ qua C đường thẳng (d) song song với BD, giao điểm của đường thẳng (d) với cạnh AB chính là điểm E
- Kẻ qua E đường thẳng \(\left(\Delta\right)\)giao điểm của \(\left(\Delta\right)\)với cạnh AC chính là ddirrt, F.
CHÚC CÁC ANH CHỊ CHĂM CHỈ HỌC, HỌC GIỎI
a.Xét tam giác DAB và tam giác DAE , ta có :
AB = AE
A1 = A2
AD là cạnh chung
ð Tam giác DAB = tam giác DAE
ð BD = DE ( 2 cạnh tương ứng )
b.V ì tam giác DAB = tam giác DAE
=> B2 = E2 ( 2 góc tương ứng )
Ta có :
B1 + B2 = 180o ( 2 góc tương ứng )
E1 + E2 = 180o ( 2 góc tương ứng )
=> B1 = E1
Ta có :
À – AB = BF
AC-AE= EC
Biết : AE = AC ; AB = AE ( gt )
=>BF = EC
Xét tam giác BDF và tam giác EDC có :
BE = FC ( cmt )
B1 = E1( cmt )
BD = ED ( cm câu a )
=> tam giác BDF = tam giác EDC
c.Vì tam giác BDF = tam giác EDC ( cmt )
=> \(\widehat{D_1}\) = \(\widehat{D_2}\) ( 2 góc tương ứng )
mà \(\widehat{D1}+\widehat{FDC=180^o}\) ( 2 góc kề bù )
=>\(\widehat{D_2+}\widehat{FDC}=180^o\)
=> \(\widehat{EDF=180^o}\)
=> E,D,F thẳng hàng