K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 9 2020

a/ \(\left\{{}\begin{matrix}\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AE}\\\overrightarrow{AM}+\overrightarrow{AN}=2\overrightarrow{AE}\end{matrix}\right.\) \(\Rightarrow\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AM}+\overrightarrow{AN}\)

b/ \(2\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=2\overrightarrow{IA}+2\overrightarrow{IE}=2\left(\overrightarrow{IA}+\overrightarrow{IE}\right)=2\overrightarrow{0}=\overrightarrow{0}\)

c/ \(2\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=2\left(\overrightarrow{OI}+\overrightarrow{IA}\right)+\overrightarrow{OI}+\overrightarrow{IB}+\overrightarrow{OI}+\overrightarrow{IC}\)

\(=\left(2\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}\right)+4\overrightarrow{OI}=\overrightarrow{0}+4\overrightarrow{OI}=4\overrightarrow{OI}\)

11 tháng 8 2015

a) \(\overrightarrow{AB}\left(2;2\right);\overrightarrow{AC}\left(2;-2\right)\) . Vì \(\frac{2}{2}\ne\frac{2}{-2}\) nên \(\overrightarrow{AB};\overrightarrow{AC}\) không cùng phương => A; B; C không thẳng hàng

b) Gọi G là trọng tâm tam giác ABC => \(\begin{cases}x_G=\frac{x_A+x_B+x_C}{3}=\frac{-1+1+1}{3}=\frac{1}{3}\\y_G=\frac{y_A+y_B+y_C}{3}=\frac{1+3+\left(-1\right)}{3}=1\end{cases}\)=> G(1/3; 1)

c) ABCD là hình bình hành <=> \(\overrightarrow{AD}=\overrightarrow{BC}\Leftrightarrow\begin{cases}x_D-x_A=x_C-x_B\\y_D-y_A=y_C-y_B\end{cases}\) <=> \(\begin{cases}x_D+1=0\\y_D-1=-4\end{cases}\) <=> \(\begin{cases}x_D=-1\\y_D=-3\end{cases}\) Vậy D (-1;-3)

d)  \(\overrightarrow{AB}\left(2;2\right);\overrightarrow{AC}\left(2;-2\right)\)

=> \(\overrightarrow{AB}.\overrightarrow{AC}=2.2+2.\left(-2\right)=0\)  =>  \(\overrightarrow{AB};\overrightarrow{AC}\) vuông góc với nhau => tam giác ABC vuông tại A

Ta có: AB2 = 2+ 22 = 8 ; AC2 = 22 + (-2)2 = 8 => AB = AC => Tam giác ABC cân tại A

vậy...

e) Có thể đề của bạn là tam giác ABE vuông cân tại E  ( Khi đó giải điều kiện: EA = EB và vec tơ EA . Vec tơ EB = 0)

g) M nằm trên Ox => M (m; 0)

Tam giác OMA cân tại O <=> OM = OA  Hay OM2 = OA<=> m= (-1)+ 12 => m2 = 2 <=> m = \(\sqrt{2}\) hoặc m = -  \(\sqrt{2}\)

Vậy M (\(\sqrt{2}\); 0) ; M (-\(\sqrt{2}\); 0 )

29 tháng 9 2019

1) Có \(2\overrightarrow{EF}=\overrightarrow{ED}+\overrightarrow{EC}\)

Lại có : \(\left\{{}\begin{matrix}\overrightarrow{AD}=\overrightarrow{AE}+\overrightarrow{ED}\\\overrightarrow{BC}=\overrightarrow{BE}+\overrightarrow{EC}\end{matrix}\right.\rightarrow\overrightarrow{AD}+\overrightarrow{BC}=\left(\overrightarrow{AE}+\overrightarrow{BE}\right)+\overrightarrow{ED}+\overrightarrow{EC}=\overrightarrow{0}+\overrightarrow{ED}+\overrightarrow{EC}=\overrightarrow{ED}+\overrightarrow{EC}\) Do đó : \(2\overrightarrow{EF}=\overrightarrow{AD}+\overrightarrow{BC}\left(=\overrightarrow{ED}+\overrightarrow{EC}\right)\)

2) Có : \(\left\{{}\begin{matrix}\overrightarrow{OA}+\overrightarrow{OB}=2\overrightarrow{OE}\left(1\right)\\\overrightarrow{OC}+\overrightarrow{OD}=2\overrightarrow{OF}=-2\overrightarrow{OE}\left(2\right)\end{matrix}\right.\)

(1) + (2) => \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=2\overrightarrow{OE}+2\overrightarrow{OF}=2\overrightarrow{OE}-2\overrightarrow{OE}=\overrightarrow{0}\)

3) \(\left(\overrightarrow{AB}+\overrightarrow{AD}\right)+\overrightarrow{AC}=2\overrightarrow{AC}=4\overrightarrow{AO}\)

4) Ta có : \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=\left(\overrightarrow{MO}+\overrightarrow{OA}\right)+\left(\overrightarrow{MO}+\overrightarrow{OB}\right)+\left(\overrightarrow{MO}+\overrightarrow{OC}\right)+\left(\overrightarrow{MO}+\overrightarrow{OD}\right)=4\overrightarrow{MO}+\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\right)=4\overrightarrow{MO}+\overrightarrow{0}=4\overrightarrow{MO}\)

AH
Akai Haruma
Giáo viên
4 tháng 12 2017

Bài 1:

Ta có:

\(\overrightarrow{AB}-\overrightarrow{CB}+\overrightarrow{CD}-\overrightarrow{ED}\)

\(=(\overrightarrow{AC}+\overrightarrow{CB})-\overrightarrow{CB}+(\overrightarrow{CE}+\overrightarrow{ED})-\overrightarrow{ED}\)

\(=\overrightarrow{AC}+\overrightarrow{CE}=\overrightarrow{AE}\)

Bài 2: Đề bài không rõ ràng, bạn xem lại hộ mình nhé.

5 tháng 12 2017

bạn ơi câu 2 mình ghi sai đề bạn mình ghi lại bạn giúp mình với

2) trong mặt phảng OXY, cho tam giác ABC có A(-3;5) B(1;-1) C(2;4)
a) Tìm vtAB và trọng tâm G của tam giác ABC
b) Tìm tọa độ D sao cho vtCD=2vtAB
c) Tính vtCA* vtBC
d) Tính chu vi và diện tích tam giác ABC
e) tính góc B của tam giác ABC
f) Tìm tọa độ điểm E thuộc oX sao cho | VTEA+ vtEB+vtEC|

5 tháng 12 2023

 a) Ta thấy \(\overrightarrow{AB}\left(3;2\right)\) và \(\overrightarrow{AC}\left(4;-3\right)\). Vì \(\dfrac{3}{4}\ne\dfrac{2}{-3}\) nên A, B, C không thẳng hàng.

 b) Ta có \(\overrightarrow{BC}\left(1;-5\right)\) 

 Do vậy \(AB=\left|\overrightarrow{AB}\right|=\sqrt{3^2+2^2}=\sqrt{13}\)

\(AC=\left|\overrightarrow{AC}\right|=\sqrt{4^2+\left(-3\right)^2}=5\)

\(BC=\left|\overrightarrow{BC}\right|=\sqrt{1^2+\left(-5\right)^2}=\sqrt{26}\)

\(\Rightarrow C_{ABC}=AB+AC+BC=5+\sqrt{13}+\sqrt{26}\)

c) Gọi M, N, P lần lượt là trung điểm BC, CA, AB.

\(\Rightarrow P=\left(\dfrac{x_A+x_B}{2};\dfrac{y_A+y_B}{2}\right)=\left(-\dfrac{3}{2};3\right)\)

\(N=\left(\dfrac{x_A+x_C}{2};\dfrac{y_A+y_C}{2}\right)=\left(-1;\dfrac{1}{2}\right)\)

\(M=\left(\dfrac{x_B+x_C}{2};\dfrac{y_B+y_C}{2}\right)=\left(\dfrac{1}{2};\dfrac{3}{2}\right)\)

 d) Gọi G là trọng tâm tam giác ABC thì \(G=\left(\dfrac{x_A+x_B+x_C}{3};\dfrac{y_A+y_B+y_C}{3}\right)=\left(-\dfrac{2}{3};\dfrac{5}{3}\right)\)

 e) Gọi \(D\left(x_D;y_D\right)\) là điểm thỏa mãn ycbt.

Để ABCD là hình bình hành thì \(\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Leftrightarrow\left(3;2\right)=\left(1-x_D;-1-y_D\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}3=1-x_D\\2=-1-y_D\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_D=-2\\y_D=-3\end{matrix}\right.\)

\(\Rightarrow D\left(-2;-3\right)\) 

f) Bạn xem lại đề nhé.