K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2022

a, Xét tam giác AHC và tam giác BEC có 

^C _ chung ; ^AHC = ^BEC 

Vậy tam giác AHC ~ tam giác BEC (g.g) 

\(\frac{HC}{EC}=\frac{AC}{BC}\Rightarrow AC.EC=BC.HC\)

b, Xét tam giác CHE và tam giác ACB 

\(\frac{CH}{AC}=\frac{EC}{BC}\)(tỉ lệ thức tỉ số đồng dạng trên) ; ^C _ chung 

Vậy tam giác CHE ~ tam giác ACB (g.g) 

13 tháng 3 2022

a)xét tam giác AHC vuông tại H và tam giác BEC vuông tại E có:

góc C:góc chung

góc E= góc H=90 độ (đường cao AH, BE)

=> tam giác AHC đồng dạng với tam giác BEC(góc-góc)

=> CH/CE=CA/CB(các cặp cạnh tương ứng tỉ lệ)

=> CH.CB=CE.CA(điều phải cm)

b) Có CH.CB=CE.CA(cm a)

=> CH/CE=CA/CB

xét tam giác CHE và tam giác ABC có:

góc C:góc chung

CH/CE=CA/CB(cmt)

=> tam giác CHE đồng dạng với tam giác ABC(c-g-c)

p/s: bạn thay đồng dạng,góc,độ=kí hiệu nhé.hình mình vẽ hơi ẩu b thông cảm huhu

a: Xet ΔCHA vuông tại H và ΔCKB vuông tại K có

góc C chung

=>ΔCHA đồng dạng với ΔCKB

b: Xét ΔCAB có

AH,BK là đừog cao

AH cắt BK tại D

=>D là trực tâm

=>CD vuông góc AB tại E

góc CHA=góc CEA=90 độ

=>CHEA nội tiếp

=>góc BHE=góc BAC

mà góc HBE chung

nên ΔBEH đồng dạng với ΔBAC

c: góc KHD=góc ACE

góc EHA=góc KBA

mà góc ACE=góc KBA

nên góc KHD=góc EHD

=>HA là phân giác của góc EHK

18 tháng 3 2017

a/

I là giao điểm của hai đường phân giác

=>IB=IC( tính chất giao điểm của 3 đg phân giác tronh tam giác)

=>tam giác BIC cân tại I

=> g IBC=g ICB

=> g IBD= g ICE

tg IBD và tg ICE, có:

g IDB=g IEC (=90 độ)

g IBD= g ICE

BI=IC

=> tg IBD=tg ICE(ch-gn)

=> ID=IE

mà ADIE là hình vuông(g D= g A=g E=90 độ)

=> ADIE là hình vuông

b/

câu này mk thấy lạ, ADIE la hình vuông thì AD=AE, AB=AC

8 tháng 5 2021

I là giao điểm của hai đường phân giác

=>IB=IC( tính chất giao điểm của 3 đg phân giác tronh tam giác)

=>tam giác BIC cân tại I

=> g IBC=g ICB

=> g IBD= g ICE

tg IBD và tg ICE, có:

g IDB=g IEC (=90 độ)

g IBD= g ICE

BI=IC

=> tg IBD=tg ICE(ch-gn)

=> ID=IE

từ a nối đến i

  Xét tg vuông AID và tg vuông AIE có

              ID=IE

              AI cạnh chung

=> tg AID =tg AIE (ch-cgv)

=> AD =AE (2 cạnh tương ứng)

  


 

a: Xet ΔBCD có

M,N lần lượtlà trung điểm của BC,CD

nên MN là đường trung bình

=>MN//BD và MN=BD/2

Xét ΔEBD có EP/ED=EQ/EB

nên PQ//BD và PQ/BD=EP/ED=1/2

=>MN//PQ và MN=PQ

Xét ΔDEC có DP/DE=DN/DC

nên PN//EC và PN=1/2EC

=>PN=1/2BD=PQ

Xét tứ giác MNPQ có

MN//PQ

MN=PQ

PN=PQ

=>MNPQ là hình thoi

b: NP//AC

=>góc QPN=góc BAC

=>góc NMP=góc EAF

=>PM//AF

c: Xét ΔAIK có

AF vừa là đường cao, vừa là phân giác

nên ΔAIK cân tại A

a: Xét ΔAHM vuong tại M và ΔABH vuông tại H có

góc BAH chung

Do đó ΔAHM đồng dạng với ΔABH

b: \(AM=\dfrac{AH^2}{AB}=\dfrac{6^2}{8}=4,5\left(cm\right)\)

a: Xét ΔDEF vuông tại E cso EH là đường cao

nên \(EH\cdot DF=ED\cdot EF\)(hệ thức lượng)

\(DF=\sqrt{15^2+20^2}=25\left(cm\right)\)

\(EH=\dfrac{ED\cdot EF}{DF}=\dfrac{15\cdot20}{25}=12\left(cm\right)\)

b: Xét ΔEHD vuông tại H có HM là đường cao

nên \(EM\cdot ED=EH^2\left(1\right)\)

Xét ΔEHF vuông tại H có HN là đường cao

nên \(EN\cdot EF=EH^2\left(2\right)\)

Từ (1) và (2) suy ra \(EM\cdot ED=EN\cdot EF\)

hay EM/EF=EN/ED

Xét ΔEMN vuông tại E và ΔEFD vuông tại E có

EM/EF=EN/ED

Do đó ΔEMN\(\sim\)ΔEFD

23 tháng 7 2021

a, Xét tam giác ABC và tam giác HBA ta có : 

^BAC = ^BHA = 900

^B _ chung 

Vậy tam giác ABC ~ tam giác HBA ( g.g )

\(\frac{AB}{HB}=\frac{BC}{AB}\Rightarrow AB^2=BH.BC\)

Xét tam giác AHC và tam giác BAC ta có : 

^AHC = ^BAC = 900

^C _ chung 

Vậy tam giác AHC ~ tam giác BAC ( g.g )

\(\frac{AH}{AB}=\frac{AC}{BC}\Rightarrow AH.BC=AB.AC\)

b, Vì tam giác AHC ~ tam giác BAC ( cmt )

\(\frac{AC}{BC}=\frac{HC}{AC}\Rightarrow AC^2=HC.BC\)

23 tháng 7 2021

Trả lời:

A B C H

a, Xét tam giác ABC và tam giác HBA có:

^B chung 

^BAC = ^BHA = 90o

=> tam giác ABC ~ tam giác HBA ( g-g )

=> \(\frac{AB}{BH}=\frac{BC}{AB}\) ( tỉ số đồng dạng )

=> AB2 = BH.BC (đpcm)

Ta có: \(S_{ABC}=\frac{1}{2}.AB.AC\)

Lại có: \(S_{ABC}=\frac{1}{2}AH.BC\)

=> \(\frac{1}{2}.AB.AC=\frac{1}{2}.AH.BC\)

=> AB.AC = AH.BC (đpcm)

b, Xét tam giác ABC và tam giác HAC có:

^C chung

^AHC = ^BAC = 90o

=> tam giác ABC ~ tam giác HAC ( g-g )

=> \(\frac{AC}{CH}=\frac{CB}{AC}\)  ( tỉ số đồng dạng )

=> AC2 = CH.CB (đpcm)