Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tam giác MAD và tam giác MCB có:
MB=MD(gt)
MA=MC(gt)
AMD=BMC( 2 góc đđ)
suy ra tam giác MAD=MCB(c.g.c)
suy ra ADB=DBC suy ra AD//BC(1)
CM tương tự ta có tam giác EAN=CBN suy ra EA//BC(2)
từ (1)(2) suy ra AD//BC và EA// BC
suy ra A,D,E thẳng hàng
\(a,\) Vì M là trung điểm AC và BD nên ABCD là hbh
Do đó \(AD=BC;AD\text{//}BC\left(1\right)\)
Vì N là trung điểm AB và CE nên ACBE là hbh
Do đó \(AE=BC;AE\text{//}BC\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow AD=AE\)
\(b,\left(1\right)\left(2\right)\Rightarrow AD\text{ trùng }AE\Rightarrow A,D,E\text{ thẳng hàng}\)
Tham khảo
a) Xét △ADM△ADM và △CBM△CBM ta có :
MD = MB (gt)
ˆM1=ˆM2M1^=M2^ (2 góc đối đỉnh)
AM = CM (gt)
=> △ADM=△CBM△ADM=△CBM (c.g.c)
=> AD = BC (2 cạnh tương ứng) (1)
Xét △AEN△AEN và △BCN△BCN ta có :
AN = BN (gt)
ˆN1=ˆN2N1^=N2^ (2 góc đối đỉnh)
EN = CN (gt)
=> △AEN=△BCN△AEN=△BCN (c.g.c)
=> AE = BC (2 cạnh tương ứng) (2)
Từ (1) và (2) => AD = AE
b) Ta có : △ADM=△BCM△ADM=△BCM (CMT)
=> ˆADM=ˆBCMADM^=BCM^ (2 góc tương ứng)
Mà ˆADMADM^ và ˆBCMBCM^ là 2 góc so le trong
=>AD // BC (dấu hiệu nhận biết 2 đường thẳng song song) (3)
Ta có : △AEN=△BCN△AEN=△BCN (CMT)
=> ˆAEN=ˆBCNAEN^=BCN^ (2 góc tương ứng)
=> Mà ˆAENAEN^ và ˆBCNBCN^ là 2 góc so le trong
=> AE // BC (dấu hiệu nhận biết 2 đường thẳng song song) (4)
Từ (3) và (4) => A,D,EA,D,E thẳng hàng (theo tiên đề Ơ-clit)
b: Xét tứ giác AEBC có
N là trung điểm của BA
N là trung điểm của EC
Do đó: AEBC là hình bình hành
Suy ra: AE//BC
Ta có \(\Delta BMC=\Delta DMA\left(c.g.c\right)\Rightarrow BC=DA\)và \(\widehat{MDA}=\widehat{MBC}\)=> AD//BC
và \(\Delta CNB=\Delta ENA\left(c.g.c\right)\Rightarrow BC=EA\)và \(\widehat{NEA}=\widehat{NCB}\)=> AE//BC
\(\Rightarrow AD=AE\)và \(A\in DE\)
Vậy A là trung điểm BC
a) Xét △ADM△ADM và △CBM△CBM ta có :
MD = MB (gt)
ˆM1=ˆM2M1^=M2^ (2 góc đối đỉnh)
AM = CM (gt)
=> △ADM=△CBM△ADM=△CBM (c.g.c)
=> AD = BC (2 cạnh tương ứng) (1)
Xét △AEN△AEN và △BCN△BCN ta có :
AN = BN (gt)
ˆN1=ˆN2N1^=N2^ (2 góc đối đỉnh)
EN = CN (gt)
=> △AEN=△BCN△AEN=△BCN (c.g.c)
=> AE = BC (2 cạnh tương ứng) (2)
Từ (1) và (2) => AD = AE
b) Ta có : △ADM=△BCM△ADM=△BCM (CMT)
=> ˆADM=ˆBCMADM^=BCM^ (2 góc tương ứng)
Mà ˆADMADM^ và ˆBCMBCM^ là 2 góc so le trong
=>AD // BC (dấu hiệu nhận biết 2 đường thẳng song song) (3)
Ta có : △AEN=△BCN△AEN=△BCN (CMT)
=> ˆAEN=ˆBCNAEN^=BCN^ (2 góc tương ứng)
=> Mà ˆAENAEN^ và ˆBCNBCN^ là 2 góc so le trong
=> AE // BC (dấu hiệu nhận biết 2 đường thẳng song song) (4)
Từ (3) và (4) => A,D,EA,D,E thẳng hàng (theo tiên đề Ơ-clit)