K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2016

cm tam giác AEM= tam giác ACN => góc EAM=gocsCAN (2 góc tương ứng )

rồi ta có góc DAE+DAN+CAN=180độ (do E,A,C thẳng hàng)

lại có     gócEAM=goscCAN=>DAE+DAN+EAM=180độ =>góc MAN là góc bẹt=> M,A,N thẳng hàng

7 tháng 1 2016

tam giác AEM làm sao bằng tam giác ACN được hả bạn

14 tháng 2 2020

bạn tham khảo link mà mk đưa cho nhé

 hoiap247.com/cau-hoi/82020 

nhớ k cho mk nhé

14 tháng 2 2020

Hình bạn tự vẽ nha :)

Xét \(\Delta ABE\) có : AE = AB => \(\Delta ABE\) cân tại A

=> \(\widehat{ABE}\) = \(\widehat{AEB}\)

\(\widehat{BAC}\) = \(\widehat{ABE}\) + \(\widehat{AEB}\) = \(2\widehat{ABE}\)

Xét  \(\Delta ADC\) có AD =  AC => \(\Delta ADC\) cân tại A

=> \(\Delta ADC\) = \(\Delta ACD\)

\(\widehat{BAC}\) = \(\widehat{ADC}\) + \(\widehat{ACD}\) = \(2\widehat{ADC}\)

Suy ra : \(\widehat{ABE}\) = \(\widehat{ADC}\) hay \(\widehat{DBE}\) = \(\widehat{BDC}\)

=> BE // CD

\(\Delta ABE\) cân tại A có M là trung điểm của BC nên AM \(\perp\)BE

\(\Delta ADC\) cân tại A có N là trung điểm của CD nên AN \(\perp\)CD

Do đó 3 điểm M , A , N thẳng hàng 

8 tháng 7 2019

Bạn kiểm tra lại đề nhé! Tia Ax nằm giữa hai tia AD và AC hay hai tia AB và AC 

Tham khảo đề bài và lời giải tại link:

Câu hỏi của Chử Văn Dũng - Toán lớp 7 - Học toán với OnlineMath

7 tháng 1 2016

chúng minh 3 điểm thẳng hàng mà nguyenmanhtrung

18 tháng 7 2019

a) Vì AM là phân giác của góc BAC

nên góc BAM = CAM

Xét ΔBAM và ΔCAM có:

AB = AC ( giả thiết )

Góc BAM = CAM ( chứng minh trên )

AM cạnh chung.

=> Δ BAM = ΔCAM ( c.g.c )

=> BM = CM ( 2 cạnh tương ứng )

mà M nằm giữa B và C

Do đó M là trung điểm của BC → ĐPCM.

b) Ta có: AB + BE = AE

AC + CF = AF

mà AB = AC ( đề bài ); AE = AF (đề bài)

=> BE = CF.

Do ΔBAM = ΔCAM nên góc ABC = ACB ( 2 góc tương ứng )

Lại có: Góc ABC + CBE = 180 độ (kề bù)

Góc ACB + BCF = 180 độ (kề bù)

=> ABC + CBE = ACB + BCF

=> Góc CBE = BCF.

Xét ΔBCE và ΔCBF có:

BE = CF ( chứng minh trên)

Góc CBE = BCF ( chứng minh trên)

BC cạnh chung ( theo hình vẽ)

=> ΔBCE = ΔCBF ( c.g.c ) → ĐPCM.

c) Lại do ΔBCE = ΔCBF nên góc EBC = FCB ( 2 góc tương ứng ) hay góc EBM = FCM

Xét ΔMBE và ΔMCF có:

MB = MC ( chứng minh ở câu a )

Góc EBM = FCM ( chứng minh trên)

BE = FC ( chứng minh ở câu b)

=> ΔMBE = ΔMCF ( c.g.c )

=> ME = MF ( 2 cạnh tương ứng ) → ĐPCM.

d) Xét ΔEMN và ΔFMN có:

EM = FM ( chứng minh ở câu c )

EN = FN ( N là trung điểm EF )

MN chung.

=> ΔEMN = ΔFMN.

=> Góc ENM = FNM (2 góc tương ứng)

Suy ra MN là tia phân giác của góc ENF (1)

Có: góc BAM = CAM

Suy ra AM là tia phân giác của góc BAC (2)

Từ (1) và (2) suy ra A, M, N nằm trên cùng 1 đường thẳng.

Do đó A, M, N thẳng hàng → ĐPCM.