Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Xét tứ giác ABCD, ta có:
MA = MC (gt)
MB = MD (định nghĩa đối xứng tâm)
Suy ra: Tứ giác ABCD là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)
⇒ AD // BC và AD = BC (1)
* Xét tứ giác ACBE, ta có:
AN = NB (gt)
NC = NE (định nghĩa đối xứng tâm)
Suy ra: Tứ giác ACBE là hình bình hành (vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường) ⇒ AE // BC và AE = BC (2)
Từ (1) và (2) suy ra: A, D, E thẳng hàng và AD = AE
Nên A là trung điểm của DE hay điểm D đối xứng với điểm E qua điểm A.
xét tam giác ADE có:
AB=DB( gt)
AC=EC (gt)
=> BC//DE ( t/c đường trung bình)
ta có: BC//DE (CMT)
AM vuông góc với BC
AM=IM
=> góc AID= góc AIE
Xét tam giác AEI và tam giác ADIcó:
góc DAI= góc EAI
AI chung
góc AID= góc AIE (CMT)
=> tam giác AEI = tam giác ADI (g.c.g)
=> DI=EI(2 cạnh tương ứng)
bạn tự vẽ hình nha:
Tứ giác KACB có 2 đường chéo KC và AB cắt nhau tại trung điểm của mỗi đường nên KACB là hình bình hành→KC//BC(1)
tương tự ta có AH//BC(2)
từ (1) và (2)→K, A, H thẳng hàng
mặt khác: KABC là hình bình hành nên KA=BC, tương tự AH=BC.
Vậy H đối xứng Với K qua A
a, Vì M là trung điểm AC và BE nên ABCE là hbh
b, Vì ABCE là hbh nên AE//BC;AE=BC(1)
Vì N là trung điểm AB và CF nên ACBF là hbh
Do đó AF//BC;AF=BC(2)
Từ (1)(2) ta được AE trùng AF và AE=AF
Vậy E đx F qua A
a: Xét tứ giác ABCE có
M là trung điểm của AC
M là trung điểm của BE
Do đó: ABCE là hình bình hành
Xét tứ giác ABCD có
AM=CM; BM=DM => ABCD là hình bình hành (tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
=> AD//=BC
Xét ứ giác ACBE có
AN=BN; CN=EN => ACBE là hình bình hành (tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
=> AE//=BC
=> AD=AE =BC
=> AE trùng AD hay A; D; E thẳng hàng (Qua 1 điểm ngoài đường thẳng chỉ dựng được duy nhất 1 đường thẳng // với đường thẳng đã cho)
=> D đối xứng với E qua A
a, Vì N là trung điểm BD và AC nên ABCD là hbh
Vì M là trung điểm CE và AB nên AEBC là hbh
b, Vì ABCD và AEBC là hbh nên \(\left\{{}\begin{matrix}AE//BC;AE=BC\\AD//BC;AD=BC\end{matrix}\right.\Rightarrow AE\equiv AD;AE=AD\)
Vậy E đx D qua A
Gọi S là trung điểm của M1M4. Ta đi c/m S là điểm cố định.
Trong \(\Delta\)M1M2M4 có: A là trung điểm M1M2; S là trung điểm M1M4 => AS là đường trung bình \(\Delta\)M1M2M4
=> AS = M2M4 /2 và AS // M2M4 (1)
Trong \(\Delta\)M2M3M4 có: B là trung điểm M2M3 ; C là trung điểm M3M4 => BC là đường trung bình \(\Delta\)M2M3M4
=> BC = M2M4 /2 và BC // M2M4 (2)
Từ (1) và (2) suy ra: AS = BC và AS // BC => Tứ giác ABCS là hình bình hành.
Ta thấy: Hình bình hành ABCS có 3 đỉnh A;B;C cố định nên đỉnh S cố định
=> Trung điểm của M1M4 là một điểm cố định (đpcm).