K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2017

A B C P N M
a)
Có: \(3\overrightarrow{OC}-\overrightarrow{OB}=3\left(\overrightarrow{OM}+\overrightarrow{MC}\right)-\left(\overrightarrow{OM}+\overrightarrow{MB}\right)\)
\(=2\overrightarrow{OM}+3\overrightarrow{MC}-\overrightarrow{MB}\)\(=2\overrightarrow{OM}+\overrightarrow{MB}-\overrightarrow{MB}=2\overrightarrow{OM}\). (Đpcm).
b)
Gọi G là trọng tâm tam giác ABC, ta chứng minh G cũng là trọng tâm tam giác MNP.
Ta có: \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\).
Ta cần chứng minh: \(\overrightarrow{GN}+\overrightarrow{GM}+\overrightarrow{GP}=\overrightarrow{0}\).
Thật vậy \(\overrightarrow{GN}+\overrightarrow{GM}+\overrightarrow{GP}=\overrightarrow{GC}+\overrightarrow{CN}+\overrightarrow{GB}+\overrightarrow{BM}+\overrightarrow{GA}+\overrightarrow{AP}\)
\(=\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)+\overrightarrow{CN}+\overrightarrow{BM}+\overrightarrow{AP}\)
\(=\overrightarrow{0}+\overrightarrow{CN}+\overrightarrow{BM}+\overrightarrow{AP}\)
\(=\dfrac{3}{4}\overrightarrow{CA}+\dfrac{3}{4}\overrightarrow{BC}+\dfrac{3}{4}\overrightarrow{AB}\)
\(=\dfrac{3}{4}\left(\overrightarrow{CA}+\overrightarrow{AB}\right)+\dfrac{3}{4}\overrightarrow{BC}\)
\(=\dfrac{3}{4}\overrightarrow{CB}+\dfrac{3}{4}\overrightarrow{BC}=\overrightarrow{0}\).
Vậy G cũng là trọng tâm tam giác MNP. (Đpcm).