K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
16 tháng 9 2018
Xin lỗi các bạn:
a) Chứng minh P và Q lần lượt là trung điểm BD và CE
16 tháng 9 2018
Nguyễn Huy Tú, Akai Haruma, Lightning Farron, Nguyễn Thanh Hằng, ...
Please help me
24 tháng 5 2022
Bài 1:
Gọi G là trung điểm của BK
Xét ΔBKC có
M là trung điểm của BC
G là trung điểm của BK
Do đó; MG là đường trung bình
=>MG//KC
hay KI//GM
Xét ΔAGM có
I là trung điểm của AM
IK//GM
Do đó; K là trung điểm của AG
=>AK=KG=GB
=>AK=1/3AB
Kẻ AH ⊥ BC tại H và AH cắt MN tại K.
Xét tam giác ABC có MN là đường trung bình nên MN // BC suy ra AH ⊥ MN tại K. Xét tứ giác CBPQ có PQ // BC (do MN // BC) và PB // CQ (do cùng vuông góc với PQ) nên CBPQ là hình bình hành. Lại có P B C ^ = 900 nên tứ giác CBPQ là hình chữ nhật. Suy ra SCBPQ = BP. BC.
Xét ΔBPM và ΔAKM có:
Suy ra ΔBPM = ΔAKM (ch – gn) => BP = AK (hai cạnh tương ứng) (1)
Xét ΔABK có MK // BH (do MN//BC) và M là trung điểm của AB nên K là trung điểm của AH (định lý về đường trung bình của tam giác). Nên AK = 1 2 AH (2)
Từ (1) và (2) ta có PB = 1 2 AH.
SABC = 1 2 AH. BC mà PB = 1 2 AH (cmt) nên SABC = PB. BC
Lại có SCBPQ = BP. BC (cmt) nên ta có SABC = SCBPQ = 50 cm2.
Đáp án cần chọn là: A