K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AA
6 tháng 12 2017

Bạn tham khảo ở đây

Câu hỏi của Công chúa thủy tề - Toán lớp 7 - Học toán với OnlineMath

2 tháng 11 2016

Ta có hình vẽ:

K A B C M K I N

a) Vì M là trung điểm của AB nên AM = BM = \(\frac{AB}{2}\)

Xét Δ AMK và Δ BMC có:

AM = BM (cmt)

AMK = BMC (đối đỉnh)

MK = MC (gt)

Do đó, Δ AMK = Δ BMC (c.g.c) (đpcm)

b) Vì N là trung điểm của AC nên AN = NC

Xét Δ ANI và Δ CNB có:

AN = NC (cmt)

ANI = CNB (đối đỉnh)

NI = NB (gt)

Do đó, Δ ANI = Δ CNB (c.g.c)

=> AI = BC (2 cạnh tương ứng) (đpcm)

c) Vì Δ AMK = Δ BMC (câu a) => AKM = MCB (2 góc tương ứng)

Mà AKM và MCB là 2 góc so le trong nên AK // BC (1)

Vì Δ ANI = Δ CNB (câu b) => IAN = NBC (2 góc tương ứng)

Mà IAN và NBC là 2 góc so le trong nên AI // BC (2)

Từ (1) và (2) => AK và AI trùng nhau hay 3 điểm I, A, K thẳng hàng (3)

Có: Δ AMK = Δ BMC (câu a) => AK = BC (2 cạnh tương ứng)

Mà AI = BC (câu b) => AK = AI (4)

Từ (3) và (4) => A là trung điểm của IK (đpcm)

2 tháng 11 2016

còn 1 bài nữa bn giúp mk nhé

soyeon_Tiểubàng giải

14 tháng 12 2016

Ta có hình vẽ:

M N A B C D

a/ Xét tam giác AMN và tam giác CDN có:

MN = ND (GT)

\(\widehat{ANM}=\widehat{CND}\) (đối đỉnh)

AN = NC (GT)

=> tam giác AMN = tam giác CDN (c.g.c)

Ta có: tam giác AMN = tam giác CDN

=> AM = CD (2 cạnh tương ứng)

Ta có: AM = MB (GT) (1)

Ta có: AM = CD (đã chứng minh trên) (2)

Từ (1), (2) => MB = CD (đpcm)

b/ Ta có: tam giác AMN = tam giác CDN (đã chứng minh trên)

=> \(\widehat{MAN}=\widehat{DCN}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong nên

=> AM // CD

Vì A,M,B thẳng hàng nên MB // CD

=> \(\widehat{BMC}=\widehat{MCD}\) (so le trong) (1)

Ta có: BM = CD (đã chứng minh trên) (2)

MC: cạnh chung (3)

Từ (1),(2),(3) => tam giác BMC = tam giác DMC

=> \(\widehat{DMC}=\widehat{MCB}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> MN // BC (đpcm)

14 tháng 12 2016

đpcm là gì vậy

 

1 tháng 12 2019

a/ Xét \(\Delta ANM\)và \(\Delta CND\)có :

+) \(MN=ND\left(gt\right).\)

+) \(AN=NC.\)

+) Góc \(ANM\)= Góc \(NCD.\)

\(\Rightarrow\Delta ANM=\Delta CND\left(c.g.c\right).\)

\(\Rightarrow CD=AM.\)

Mà \(AM=BM.\)

\(\Rightarrow CD=BM.\)

b/ Xét \(\Delta ABC\)có \(M,N\)lần lượt là trung điểm của \(AB,AC.\)

\(\Rightarrow MN\)là đường trung bình của \(\Delta ABC.\)

\(\Rightarrow MN//BC\)và \(MN=\frac{1}{2}BC.\)

c/ Ta có \(MN=\frac{1}{2}BC.\)

\(\Rightarrow2MN=BC.\)

\(\Leftrightarrow MD=BC.\)

Xét tứ giác \(BMDC\)có \(MD=BC\)và \(MD//BC.\)

\(\Rightarrow\)Tứ giác \(BMDC\)là hình bình hành.

\(\Rightarrow MC\)và \(BD\)là hai đường chéo của hình bình hành \(BMDC.\)

\(\Rightarrow BD\)đi qua trung điểm của đoạn thẳng \(MC.\)

#Riin