Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo ở đây
Câu hỏi của Công chúa thủy tề - Toán lớp 7 - Học toán với OnlineMath
Ta có hình vẽ:
a) Vì M là trung điểm của AB nên AM = BM = \(\frac{AB}{2}\)
Xét Δ AMK và Δ BMC có:
AM = BM (cmt)
AMK = BMC (đối đỉnh)
MK = MC (gt)
Do đó, Δ AMK = Δ BMC (c.g.c) (đpcm)
b) Vì N là trung điểm của AC nên AN = NC
Xét Δ ANI và Δ CNB có:
AN = NC (cmt)
ANI = CNB (đối đỉnh)
NI = NB (gt)
Do đó, Δ ANI = Δ CNB (c.g.c)
=> AI = BC (2 cạnh tương ứng) (đpcm)
c) Vì Δ AMK = Δ BMC (câu a) => AKM = MCB (2 góc tương ứng)
Mà AKM và MCB là 2 góc so le trong nên AK // BC (1)
Vì Δ ANI = Δ CNB (câu b) => IAN = NBC (2 góc tương ứng)
Mà IAN và NBC là 2 góc so le trong nên AI // BC (2)
Từ (1) và (2) => AK và AI trùng nhau hay 3 điểm I, A, K thẳng hàng (3)
Có: Δ AMK = Δ BMC (câu a) => AK = BC (2 cạnh tương ứng)
Mà AI = BC (câu b) => AK = AI (4)
Từ (3) và (4) => A là trung điểm của IK (đpcm)
Ta có hình vẽ:
a/ Xét tam giác AMN và tam giác CDN có:
MN = ND (GT)
\(\widehat{ANM}=\widehat{CND}\) (đối đỉnh)
AN = NC (GT)
=> tam giác AMN = tam giác CDN (c.g.c)
Ta có: tam giác AMN = tam giác CDN
=> AM = CD (2 cạnh tương ứng)
Ta có: AM = MB (GT) (1)
Ta có: AM = CD (đã chứng minh trên) (2)
Từ (1), (2) => MB = CD (đpcm)
b/ Ta có: tam giác AMN = tam giác CDN (đã chứng minh trên)
=> \(\widehat{MAN}=\widehat{DCN}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong nên
=> AM // CD
Vì A,M,B thẳng hàng nên MB // CD
=> \(\widehat{BMC}=\widehat{MCD}\) (so le trong) (1)
Ta có: BM = CD (đã chứng minh trên) (2)
MC: cạnh chung (3)
Từ (1),(2),(3) => tam giác BMC = tam giác DMC
=> \(\widehat{DMC}=\widehat{MCB}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> MN // BC (đpcm)
a/ Xét \(\Delta ANM\)và \(\Delta CND\)có :
+) \(MN=ND\left(gt\right).\)
+) \(AN=NC.\)
+) Góc \(ANM\)= Góc \(NCD.\)
\(\Rightarrow\Delta ANM=\Delta CND\left(c.g.c\right).\)
\(\Rightarrow CD=AM.\)
Mà \(AM=BM.\)
\(\Rightarrow CD=BM.\)
b/ Xét \(\Delta ABC\)có \(M,N\)lần lượt là trung điểm của \(AB,AC.\)
\(\Rightarrow MN\)là đường trung bình của \(\Delta ABC.\)
\(\Rightarrow MN//BC\)và \(MN=\frac{1}{2}BC.\)
c/ Ta có \(MN=\frac{1}{2}BC.\)
\(\Rightarrow2MN=BC.\)
\(\Leftrightarrow MD=BC.\)
Xét tứ giác \(BMDC\)có \(MD=BC\)và \(MD//BC.\)
\(\Rightarrow\)Tứ giác \(BMDC\)là hình bình hành.
\(\Rightarrow MC\)và \(BD\)là hai đường chéo của hình bình hành \(BMDC.\)
\(\Rightarrow BD\)đi qua trung điểm của đoạn thẳng \(MC.\)
#Riin