Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AMN và tam giác BMC, ta có:
MA = MB (M là trung điểm của AB)
góc NMA = góc BMC (đối đỉnh)
MN = MC (gt)
=> tam giác AMN = tam giác BMC
b) Xét tứ giác ACBN, ta có:
M là trung điểm của AB (gt)
M là trung điểm của CN (MC = MN)
=> Tứ giác ACBN là hình bình hành
=> AN // BC
c) Do tứ giác ACBN là hình bình hành => AN // BC và AN = BC => góc ANC = góc BCN và AN = BC
Xét tam giác NAC và tam giác CBN, ta có:
AN = BC (cmt)
góc ANC = góc BCN (cmt)
CN chung
=> tam giác NAC = tam giác CBN
Xét tam giác AMN và tam giác BMC có
⎧⎩⎨⎪⎪MB=MANMAˆ=BMCˆMN=MC{MB=MANMA^=BMC^MN=MC(Vì M là trung điểm AB; MN=MC)
⇒⇒ tam giác AMN=tam giác BMC (c-g-c)
⇒NAMˆ=MBCˆ⇒NAM^=MBC^ (2 góc tương ứng)
⇒⇒ AN//BC (Vì 2 góc NAM và góc MBC là 2 góc so le trong)
a/ Xét \(\Delta ANM\)và \(\Delta CND\)có :
+) \(MN=ND\left(gt\right).\)
+) \(AN=NC.\)
+) Góc \(ANM\)= Góc \(NCD.\)
\(\Rightarrow\Delta ANM=\Delta CND\left(c.g.c\right).\)
\(\Rightarrow CD=AM.\)
Mà \(AM=BM.\)
\(\Rightarrow CD=BM.\)
b/ Xét \(\Delta ABC\)có \(M,N\)lần lượt là trung điểm của \(AB,AC.\)
\(\Rightarrow MN\)là đường trung bình của \(\Delta ABC.\)
\(\Rightarrow MN//BC\)và \(MN=\frac{1}{2}BC.\)
c/ Ta có \(MN=\frac{1}{2}BC.\)
\(\Rightarrow2MN=BC.\)
\(\Leftrightarrow MD=BC.\)
Xét tứ giác \(BMDC\)có \(MD=BC\)và \(MD//BC.\)
\(\Rightarrow\)Tứ giác \(BMDC\)là hình bình hành.
\(\Rightarrow MC\)và \(BD\)là hai đường chéo của hình bình hành \(BMDC.\)
\(\Rightarrow BD\)đi qua trung điểm của đoạn thẳng \(MC.\)
#Riin
Ta có hình vẽ:
A B C M N
Ta có:
AB = AM ( gt )
A1* = A2* ( 2 gđđ )
AC = AN ( gt )
Do đó tam giác ABC = tam giác AMN
b) Ta có: tam giác ABC = tam giác AMN
=> BC = MN
c) Có N* = C* ( tam giác ABC = tam giác AMN )
Mà N* và C* là hai góc so le trong
=> NM // BC
Chú ý: * là góc.
A B C N M
a) Xét hai tam giác AMN và BMC có:
AM = BM (gt)
\(\widehat{AMN}=\widehat{BMC}\) (đối đỉnh)
NM = CM (gt)
Vậy \(\Delta AMN=\Delta BMC\left(c-g-c\right)\).
b) Vì \(\Delta AMN=\Delta BMC\left(cmt\right)\)
\(\Rightarrow\widehat{ANM}=\widehat{BCM}\)
Mà hai góc này ở vị trí so le trong
Vậy AN // BC.
c) Xét hai tam giác NAC và CBN có:
AN = BC (\(\Delta AMN=\Delta BMC\))
\(\widehat{ANC}=\widehat{BCN}\) (cmt)
NC: cạnh chung
Vậy \(\Delta NAC=\Delta CBN\left(c-g-c\right)\).