K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2023

a: Xét tứ giác ADME có

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

=>ADME là hình chữ nhật

=>AM=DE

b: Xét ΔABC có

M là trung điểm của BC

MD//AC

Do đó: D là trung điểm của BA

Xét ΔABC có

M là trung điểm của BC

ME//AB

Do đó: E là trung điểm của AC

Xét ΔABC có

D,E lần lượt là trung điểm của AB,AC

=>DE là đường trung bình của ΔABC

=>DE//BC và \(DE=\dfrac{BC}{2}\)

Ta có: DE//BC

M\(\in\)BC

Do đó: BM//DE

Ta có: \(DE=\dfrac{BC}{2}\)

\(CM=MB=\dfrac{CB}{2}\)

Do đó: DE=CM=MB

Xét tứ giác BDEM có

DE//MB

DE=MB

Do đó: BDEM là hình bình hành

c: Ta có: ΔHAC vuông tại H

mà HE là đường trung tuyến

nên \(HE=\dfrac{AC}{2}\left(1\right)\)

Xét ΔABC có

M,D lần lượt là trung điểm của BC,BA

=>MD là đường trung bình của ΔABC

=>\(MD=\dfrac{AC}{2}\left(2\right)\)

Từ (1) và (2) suy ra MD=HE

Ta có: ED//BC

M,H\(\in\)BC

DO đó: ED//MH

Xét tứ giác DHME có

MH//DE
nên DHME là hình thang

Hình thang DHME có DM=HE

nên DHME là hình thang cân

12 tháng 12 2023

a) Xét tứ giác ADME có:

∠(DAE) = ∠(ADM) = ∠(AEM) = 90o

⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).

b) Ta có ME // AB ( cùng vuông góc AC)

M là trung điểm của BC (gt)

⇒ E là trung điểm của AC.

Ta có E là trung điểm của AC (cmt)

Chứng minh tương tự ta có D là trung điểm của AB

Do đó DE là đường trung bình của ΔABC

⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC

⇒ Tứ giác CMDE là hình bình hành.

c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)

Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)

DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)

Từ (1) và (2) ⇒ MHDE là hình thang cân.

d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH

Xét ΔDIH và ΔKIA có

IH = IA

∠DIH = ∠AIK (đối đỉnh),

∠H1 = ∠A1(so le trong)

ΔDIH = ΔKIA (g.c.g)

⇒ ID = IK

Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành

⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC

Xét tứ giác ADME có

góc ADM=góc AEM=góc DAE=90 độ

=>ADME là hình chữ nhật

=>AM cắt DE tại trung điểm của mỗi đường

mà O là trung điểm của DE

nên O là trung điểm của AM

=>A,O,M thẳng hàng

1 tháng 9 2023

Mình cảm ơn bạn ạ

18 tháng 10 2020

giải nhanh hộ mik bài trên mới mình hứa sẽ tích nhaaa

18 tháng 10 2020

bn viết phần đề bài có dấu đc ko. Mk ko dịch đc

22 tháng 8 2023

A B C D E M

Ta có

MD//AB=> MD//AE

ME//AC=> ME//AD

=> ADME là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)=> ME=AD; MD=AE (cạnh đối hbh)

Ta có 

ME//AC \(\Rightarrow\dfrac{AE}{AB}=\dfrac{CM}{BC}\) (Talet trong tg) (1)

Ta có

MD//AB \(\Rightarrow\dfrac{AD}{AC}=\dfrac{BM}{BC}\) (Talet trong tg) (2)

Cộng 2 vế của (1) với (2)

\(\Rightarrow\dfrac{AE}{AB}+\dfrac{AD}{AC}=\dfrac{CM}{BC}+\dfrac{BM}{BC}=\dfrac{BC}{BC}=1\left(đpcm\right)\)

19 tháng 12 2022

a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)

b: Xét tứ giác ADME có

góc ADM=góc AEM=góc DAE=90 độ

nên ADME là hình chữ nhật

c: Xét ΔABC có

M là trung điểm của BC

ME//AB

Do đó E là trung điểm của AC

Xét ΔABC có

M là trung điểm của BC

MD//AC

Do đó: D là trung điểm của AB

=>ME//BD và ME=BD

=>MEDB là hình bình hành

=>MD cắtEB tại trung điểm của mỗi đường

=>B,K,E thẳng hàng