K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 1 2024

Lời giải:

Xét tam giác $CEK$ và $AED$ có:

$\widehat{A_1}=\widehat{C_1}$ (2 góc so le trong)

$\widehat{E_1}=\widehat{E_2}$ (đối đỉnh)

$AE=EC$ (do $E$ là trung điểm $AC$)

$\Rightarrow \triangle CEK=\triangle AED$ (g.c.g)

$\Rightarrow CK=AD$

Mà $AD=BD$ (do $D$ là trung điểm $AB$)

$\Rightarrow CK=BD$

-----------------------

Từ tam giác bằng nhau vừa cm suy ra $EK=ED$

$\Rightarrow DE=\frac{1}{2}DK(1)$

Lại có:

Xét tam giác $BDC$ và $KCD$ có:

$\widehat{BDC}=\widehat{KCD}$ (so le trong)

$DC$ chung

$BD=CK$ (cmt)

$\Rightarrow \triangle BDC=\triangle KCD$ (c.g.c)

$\Rightarrow BC=KD(2)$

Từ $(1); (2)\Rightarrow DE=\frac{1}{2}BC$

AH
Akai Haruma
Giáo viên
18 tháng 1 2024

Hình vẽ:

a: Xét ΔADB và ΔADC có

AD chung

DB=DC

AB=AC

=>ΔABD=ΔACD

b: Xét ΔEAK và ΔEBD có

góc EAK=góc EBD

EA=EB

góc AEK=góc BED

=>ΔEAK=ΔEBD

=>AK=BD=CD

c: AK//CD và AK=CD

=>AKDC là hbh

=>KD//AC và AD cắt KC tại trung điểm của mỗi đường

=>F là trung điểm chung của AD và KC

Xét ΔABD có AE/AB=AF/AD

nên EF//BD

=>EF vuông góc AD