K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔCAD và ΔCED có

CA=CE

\(\widehat{ACD}=\widehat{ECD}\)

CD chung

Do đó: ΔCAD=ΔCED

Suy ra: DA=DE

2: \(\widehat{CAD}=\widehat{CED}=120^0\)

A B C E M

a) Xét \(\Delta ABM\)và \(\Delta EBM\)có:

\(BA=BE\left(gt\right)\)

\(\widehat{ABM}=\widehat{EBM}\)(BM là tia phân giác của \(\widehat{B}\))

\(BM\)là cạnh chung

Do đó \(\Delta ABM=\Delta EBM\left(c.g.c\right)\)

b) Vì \(\Delta ABM=\Delta EBM\)(câu a)

Nên \(AM=EM\)(2 cạnh tương ứng)

4 tháng 12 2016

đồ ngu

4 tháng 12 2016

Cau b lam ntn nhi

6 tháng 3 2018

A) XÉT \(\Delta ABC\)

CÓ: \(\widehat{A}+\widehat{AB}C+\widehat{ACB}=180^0\)( ĐỊNH LÍ)

THAY SỐ: \(85^0+40^0+\widehat{ACB}=180^0\)

                                            \(\widehat{ACB}=180^0-85^0-40^0\)

                                          \(\widehat{ACB}=55^0\)

\(\Rightarrow\widehat{A}>\widehat{ACB}>\widehat{ABC}(85^0>55^0>40^0)\)

\(\Rightarrow BC>AB>AC\)( ĐỊNH LÍ)

B)  TA CÓ: \(\widehat{ABC}+\widehat{CBE}=180^0\)( KỀ BÙ)

THAY SỐ: \(40^0+\widehat{CBE}=180^0\)

                                \(\widehat{CBE}=180^0-40^0\)

                                 \(\widehat{CBE}=140^0\)

TA CÓ: \(\widehat{BAC}+\widehat{DAC}=180^0\)(KỀ BÙ)

THAY SỐ: \(85^0+\widehat{DAC}=180^0\)

                              \(\widehat{DAC}=180^0-85^0\)

                            \(\widehat{DAC}=95^0\)

XÉT \(\Delta CBE\)

CÓ: \(\widehat{CBE}=140^0\)

\(\Rightarrow\widehat{CBE}\)LÀ GÓC LỚN NHẤT ( ĐỊNH LÍ)

MÀ CE LÀ CẠNH ĐỐI DIỆN VỚI \(\widehat{CBE}\)

\(\Rightarrow CE\)LÀ CẠNH LỚN NHẤT ( ĐỊNH LÍ)

\(\Rightarrow CE>CB\)( ĐỊNH LÍ) (1)

XÉT \(\Delta ACD\)

CÓ: AC =AD ( GT)

\(\Rightarrow\Delta ACD\)CÂN TẠI A ( ĐỊNH LÍ)

\(\Rightarrow\widehat{D}=\widehat{ACD}\)( TÍNH CHẤT) 

MÀ \(\widehat{D}+\widehat{ACD}+\widehat{CAD}=180^0\)( ĐỊNH LÍ TỔNG 3 GÓC TRONG 1 TAM GIÁC)

\(\Rightarrow\widehat{D}+\widehat{D}+\widehat{CAD}=180^0\)

THAY SỐ: \(2\widehat{D}+95^0=180^0\)

                     \(\widehat{D}=\left(180^0-95^0\right):2\)

                   \(\widehat{D}=42,5^0\)

XÉT \(\Delta BCD\)

CÓ: \(\widehat{D}>\widehat{ABC}\left(42,5^0>40^0\right)\)

\(\Rightarrow CB>CD\)(ĐỊNH LÍ) (2)

TỪ (1) ; (2)  \(\Rightarrow CE>CB>CD\)

MK KẺ HÌNH XẤU LẮM!! NÊN MK KO KẺ ĐÂU, BN KẺ GIÙM MK NHA!!!!!! THANKS

CHÚC BN HỌC TỐT!!!!!!

9 tháng 4 2019

A, 

xét \(\Delta ABD\)và \(\Delta ACD\)

CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)

SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C)  (1)

=> \(\widehat{BDA}\)=\(\widehat{CDA}\)

MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180

=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90

B,  (1) => BC=DC=1/2 BC=8

ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ

\(AB^2=AD^2+BD^2\)

=> AD^2=36

=>AD=6

9 tháng 4 2019

c, vì M là trọng tâm nên AM=2/3AD=4

d