Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Áp dụng định lý Talet cho:
Tam giác $CFD$ có $AM\parallel FD$:
$\frac{DF}{AM}=\frac{CD}{CM}(1)$
Tam giác $ABM$ có $ED\parallel AM$:
$\frac{ED}{AM}=\frac{BD}{BM}(2)$
Lấy $(1)+(2)\Rightarrow \frac{DE+DF}{AM}=\frac{CD}{BC:2}+\frac{BD}{BC:2}=\frac{BC}{BC:2}=2$
$\Rightarrow DE+DF=2AM$
Vì $AM$ không đổi khi $D$ di động nên $DE+DF$ không đổi khi $D$ di động
b) Dễ thấy $KADM$ là hình bình hành do có các cặp cạnh đối song song. Do đó $KA=DM$
Áp dụng định lý Talet cho trường hợp $AK\parallel BD$:
$\frac{KE}{ED}=\frac{KA}{BD}=\frac{DM}{BD}(3)$
Lấy $(1):(2)$ suy ra $\frac{DF}{ED}=\frac{CD}{BD}$
$\Rightarrow \frac{EF}{ED}=\frac{CD}{BD}-1=\frac{CD-BD}{BD}=\frac{CM+DM-(BM-DM)}{BD}=\frac{2DM}{BD}(4)$
Từ $(3);(4)\Rightarrow \frac{2KE}{ED}=\frac{EF}{ED}$
$\Rightarrow 2KE=EF\Rightarrow FK=EK$ hay $K$ là trung điểm $EF$
a) Xét ∆ABM có DE//AM => \(\dfrac{AE}{AB}=\dfrac{DM}{BM}\)
Mà M là trung điểm của BC => BM=CM
=> \(\dfrac{AE}{AB}=\dfrac{DM}{CM}\)(1)
Xét ∆FDC có AM//FD => \(\dfrac{DM}{MC}=\dfrac{FA}{AC}\)(2)
Từ (1) và (2) => \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\) <=> AE.AC=AF.AB
b) Ta có: \(\dfrac{DF}{AM}=\dfrac{DC}{CM}\)
Mà \(\dfrac{DE}{AM}=\dfrac{BD}{BM}=\dfrac{BD}{CM}\)
=> \(\dfrac{DE+DF}{AM}=\dfrac{BD+DC}{MC}=\dfrac{BC}{MC}=2\)
=> \(DE+DF=2AM\)