Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BKCI có
O là trung điểm của BC
O là trung điểm của KI
Do đó: BKCI là hình bình hành
Suy ra: BI//CK và CI=BK
=>AB\(\perp\)BI
b: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc BAE chung
DO đó:ΔAEB đồng dạng với ΔAFC
Suy ra AE/AF=AB/AC
hay \(AE\cdot AC=AF\cdot AB\)
Xét ΔBFK vuông tại F và ΔBEA vuông tại E có
góc FBK chung
Do đo:S ΔBFK\(\sim\)ΔBEA
SUy ra: BF/BE=BK/BA
=>BF/BE=IC/BA
hay \(BF\cdot BA=BE\cdot IC\)
a: Kẻ AN là đường kính của (O)
góc ABN=1/2*180=90 độ
=>BN//CH
góc ACN=1/2*180=90 độ
=>CH//BN
=>BHCN là hình bình hành
=>M là trung điểm của HN
Xét ΔAHN có NM/NH=NO/NA
nên OM//AH và OM=AH/2
=>AH=2OM
c: ΔOKL cân tại O
mà OI là đường cao
nên I là trung điểm của KL
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
1
a) ta có A đối xứng với F qua O => O là trung điểm của AF
=> BO là trung tuyến của AF (1)
=> CO là trung tuyến của AF (2)
ta lại có O là giao điểm của 3 đường trung trực của tam giác ABC
=> OA = OB =OC (3)
từ 1-2-3 => Góc ABF = góc ACF = 90
=> AB vuông góc với FB
AC vuông góc với FC
mà CH vuông góc AB => CH // BF
BH vuông góc với AC => BH//CF
Xét tứ giác BHCF có
CH // BF
BH//CF
=> HBFC là hình bình hành (dhnb) có HF và BC là 2 đường chéo
M là trung điểm của BC
=> M là trung điểm của HF => 3 điểm H,M,F thẳng hàng ; HM =FM
=> H đối xứng với F qua M
b) Xét tam giác AHF có M là trung điểm của HF O là trung điểm AF
=> OM là đường trung bình
=> OM =1/2AH <=> AH/OM=2
vì H là giao điểm của 2 đường cao BD và CE nên H là trực tâm => AH vuông góc BC
ta lại có OM vuông góc với BC ( M là trung điểm của BC ; O là giao 3 đường trung tuyến => OM là đường trung tuyến của BC )
=> OM // AH => góc HAG =góc GMO (2 góc so le trong)
xét tam giác AHG và tam giác MOG
có :góc HGA =góc MGO (2 góc đối đỉnh)
góc HAG =góc GMO (cmt)
=> đồng dạng (gg) => AH /OM = AG/MG =2
<=> AG=2MG <=> AM = AG + MG =3MG
<=> AG/AM =2/3 mà AM là tiếp tuyến của BC ( m là trnug điểm BC)
=> G là trọng tâm của tma giác ABC